Higgs Physics in ATLAS

Partikeldagarna, 2019 @ Linköping

Mike Nelson, Stockholm University

michael.edward.nelson@cern.ch

Stockholm University

- Higgs boson **discovered** during Run 1 of the LHC.
- The only experimentally verified fundamental scalar ... SPECIAL !

 Higgs mass explained by popular beyond Standard Model (BSM) theories like Supersymmetry ... SPECIAL !

Higgs potential directly connects particle physics and cosmology ... SPECIAL !

Higgs potential directly connects particle physics and cosmology ... SPECIAL !

And who cares ? ...

ANERS/7

Stockholm University

Precision Measurements

H → *WW** Measurements

- WW* second-largest branching fraction (BF) + clean final states => precise and rigorous test of the SM prediction.
- $W \rightarrow lv \Rightarrow$ single leptons triggers and a dilepton $e-\mu$ trigger.
 - **Categorisation based on** *N***_{jet}**: *N*_{jet} = 0,1 => *gg*F; *N*_{jet} = 2+ => VBF From arXiv:1808.09054

H → *WW** Measurements

Michael E. Nelson

Stockholm

Direct BSM Searches

Searches for Charged Higgses

H⁺⁺⁽⁻⁻⁾ occur in a variety of BSM theories: left-right symmetric models, little Higgs theories, type-II seesaw, scalar singlet dark matter, ...

Stockholm

University

- Dilepton invariant masses above 200
 GeV define search regions.
- Vetos events with at least one btagged jet, to reduce background. Have 3- and 4-lepton search regions.

From arXiv:1710.09748

HH: BSM meets Precision

The Global Higgs Potential

• *HH* production probes the **global** shape of the **Higgs potential**.

$$V(\phi) = -\frac{1}{2}\mu^{2}\phi^{2} + \frac{1}{4}\lambda\phi^{4}$$

Perturb minimum, *v*, by amount $h V(\phi) \rightarrow V(v+h)$

$$V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + \dots$$
$$= V_0 + \left| \frac{1}{2} m_h^2 h^2 \right| + \left| \frac{m_h^2}{2v^2} v h^3 \right| + \left| \frac{1}{4} \frac{m_h^2}{2v^2} h^4 \right| + \left| \frac{m_h^2}{4} \frac{m_h^2}{2v^2} \frac{m_h^2}{2v^2} h^4 \right| + \left| \frac{m_h^2}{4} \frac{m_h^2}{2v^2} \frac{m_h$$

Test the SM predictions:

$$v = rac{\mu}{\sqrt{\lambda}} = 246 \, {
m GeV}$$

 $\lambda = rac{m_h^2}{2v^2} pprox 0.13$

Cosmological implications !

Michael E. Nelson

Resonant and Non-Resonant Searches

e.g. Spin-0: X = S, a new scalar

e.g Spin-2 X = G, Randall-Sundrum graviton

 Single lepton triggering on events, with exactly two b-tagged jets and a "missing mass" > 60 GeV.
 From arXiv:1808.00336

 Major analysis tool is the Boosted Decision Tree algorithm. Takes different combinations of 11 				$\begin{array}{c c} \bullet & Data \\ \bullet & Data \\ \hline & & & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline \\$			╒╵┝┻┫╹╹╵╵┨╵╵╵┨╵╵
			Observed	-1σ	Expected	$+1\sigma$	-
Var m_H $m_{\tau \tau}^M$ m_{bb}	$ au_{ m lep} au_{ m had}$	$\sigma(HH \to bb\tau\tau)$ [fb]	57	49.9	69	96	-
		$\sigma/\sigma_{ m SM}$	23.5	20.5	28.4	39.5	
	$ au_{ m had} au_{ m had}$	$\sigma(HH \to bb\tau\tau)$ [fb]	40.0	30.6	42.4	59 *	
		$\sigma/\sigma_{ m SM}$	16.4	12.5	17.4	24.2	
	Combination	$\sigma(HH \to bb\tau\tau)$ [fb]	30.9	26.0	36.1	50 [_]	500
		$\sigma/\sigma_{ m SM}$	12.7	10.7	14.8	20.6 ^e	γ]
$\Delta R(l)$ $\Delta R(l)$ $E_{\mathrm{T}}^{\mathrm{miss}}$	(b,b)	\checkmark	\checkmark	•	Scale of the	signal !	
$E_{\mathrm{T}}^{\mathrm{miss}}$ m_{T}^{W} $\Delta \phi(R)$	ϕ centrality (H, H)		✓	•	BDT inputs		
$\frac{\Delta p_{\mathrm{T}}(\mathrm{rep}, \mathrm{had-vis})}{\mathrm{Sub-leading } b\text{-jet } p_{\mathrm{T}}} \qquad \checkmark \qquad $;

$HH \rightarrow bb\gamma\gamma$

- Trigger on diphoton events, and have deduced 2-, 1-, and 0-b-jet regions: two search regions, and the 0-tag for data-driven γ+jet background estimation.
- Fit $m_{\gamma\gamma}$ in the non-resonant channel, and $m_{\gamma\gamma jj}$ in the resonant channel, which is sensitive to different X-particle resonances.

Michael E. Nelson

$HH \rightarrow bb\gamma\gamma$

Stockholm University

- Set limits on both the **Higgs self-coupling and** the production crosssection for non-resonant HH.
- $bb\gamma\gamma$ sets stringent constraints on κ_{λ} .
- Upper limits on the mass of $X(HH) \rightarrow bb\gamma\gamma$ set using the resonant channel.

 $\sigma_{gg \to HH} \ [\text{pb}]$

HH Combinations

- $bb\tau\tau$, $bb\gamma\gamma$, bbbb provide the most sensitive limits on the cross-section of non-resonant *HH* production.
- **Combine** *bb* $\tau\tau$, *bb* $\gamma\gamma$, *bbbb* in a 2015+2016 limit of —5.0 < κ_{λ} < 12.0.

Stockholm

University

- The Higgs boson is special and probing its properties at the precision, %-level is a major undertaking and goal for the LHC over the next 10 years.
- Sweden's ATLAS groups are playing a leading role in precision Higgs measurements ($H \rightarrow WW^*$), direct searches for BSM Higgs production, and di-Higgs final states.
- Di-Higgs production a high profile analysis at the LHC, and Sweden has established itself as one of the key players. E.g. newly-founded Swedish di-Higgs Working Group for communication between experimentalists and theorists.

Backup

The only experimentally verified fundamental scalar ... SPECIAL !

Searches for Charged Higgses

- No statistically significant excesses or bumps in the signal region.
- Set a combination of limits on the charged Higgs mass, for BF = 100 % and BF < 100 % (latter particularly favoured by type-II seesaw models).

From arXiv:1710.09748

Stockholm

H → *WW** Measurements

- *b*-tagging, *p*_T > 20 GeV and *m*_T cuts used to reduce the large top production background.
- Additional requirements on dilepton invariant masses and angle between the dilepton system for ggF, as well as m_T as the final discriminant; central jet and outside lepton veto used for VBF, followed by a Boosted Decision Tree (BDT) discriminant.

Michael E. Nelson

Michael E. Nelson

Partikeldagarna, 2019

AINERS/A

FS

Stockholm

HH Combinations

Michael E. Nelson

So ... where are we headed ?

HL-LHC Prospects

- Extrapolated limits with the HL-LHC could lead to the 5σ discovery of *HH* production, and a definitive test of the self-coupling in the SM. Further prospects in ATL-PHYS-PUB-2018-053.
- Success of discovery dependent on innovation and systematics.

