Why we need SM measurements?

- Two obvious reasons:
 - SM processes are backgrounds for new physics searches
 - If you do BSM you need to know your SM processes first
 - Measurements can be THE way to find new physics
 - Considering the lack of new particles or significant new effects
 - We may find them in deviations with respect to the predictions
- There is also a third one:
 - The Higgs boson is a SM particle (or so it seems, sigh!)
 - It is still very new, there is much to learn from the Higgs sector
- In the next years we have the potential to stress-test the SM like never before
 - A comprehensive program of measurements/theory developments is needed

Main strategic objectives

- Precision
 - both in the measurements and in the theoretical predictions
- To probe extreme corners of the phase space
 - inclusive and (multi-)differential
 - exploring rare production and decay modes
- To integrate measurements and searches

Implications

• On the **experimental side**:

- higher luminosities (at the LHC and elsewhere)
- higher collision energies --push the energy frontier
- better detectors
- smaller systematic uncertainties
- On the **theory side**:
 - improving perturbative calculations by going to higher orders
 - including both QCD and EW corrections
 - understanding better non-perturbative effects

SM measurements shopping list

- Characterization of the Higgs boson
 - mass, width and couplings
 - top-Higgs Yukawa coupling and Higgs self-coupling -- high priority
- Measurements on other heavy particles
 - important for BSM searches
 - top quarks, W/Z bosons
 - top quark and W boson masses tests of SM consistency via electroweak fits
- Testing the SM \leftrightarrow improving our understanding of the SM as such
 - pinning down other relevant SM parameters
 - QCD
 - minimum bias
- In all cases
 - multi-differential measurements --interface theory predictions, modeling, and the data
 - constrain important SM quantities and BSM models
 - Exploring extreme corners of phase space
- Study of high pileup environments (and how to adapt our hardware and software to them)
- Precise estimation of the luminosity
 - associated uncertainty is already a limiting factor for some of our precision measurements

SM theory shopping list

- Increased experimental precision must be matched with advances in the precision of theoretical calculations
- QCD NLO predictions state-of-the-art today
 - for arbitrary processes embedded in detailed simulations of full events
 - some special observables calculated to NNLO or even N³LO
- Increased precision requires:
 - going to even higher orders for selected processes
 - a general scheme of **combining EW and QCD corrections with full event simulation**, taking care to also improve the treatment of resummation and non-perturbative effects, to understand better the accuracy of the predictions.
 - better models for minimum-bias events is important to understand better the pile-up in high luminosity environments
- Other:
 - Tools for experiment/theory comparisons
 - Low energy high precision phenomenology
 - Forward physics

Experimental facilities

- As in any other topic, different objectives can be reached depending on the experimental facilities available and the advance of the theory
 - Precision measurement of the Higgs self-coupling \rightarrow HL-LHC unlikely to be sufficient
 - HE-LHC, FCC, or at a linear collider with a sufficient energy
- To go below certain thresholds in e.g. the systematic uncertainty associated to top quark measurements
 - a linear collider that can access the top quark
 - a more precise estimation of the luminosity at the LHC and beyond and improved modelling
- Precise QCD measurements could be done at the **HL-LHC** using partial data reconstruction techniques in low pileup datasets
 - HE-LHC would be needed in order to measure QCD at the highest energy scales
- SM / BSM searches can be performed in pile-up collisions that so far we have been throwing away
 - HGTD in a HL-LHC context could help and also a precise luminosity estimation will be needed.