CATERINA, CHRISTIAN, RIKARD

BSM INPUT TO EUROPEAN STRATEGY

HOW WE GOT TO THE TEXT

- ▶ Two meetings: first introductions, then discussion
- ▶ Following those, some iterations among the participants
 - More could happen if needed or desired
- Live-notes: https://docs.google.com/document/d/
 https://docs.google.com/document/d/
 1gDNCzfSIWyUeCvgpr0NVgAy5o896fWC13D8TsgjSpDs/
 edit#heading=h.ip9bqtp3e69f
- Current text (summarized in next slides) has the following shortcomings:
- Too long (but shorter than others...)
- Theory inputs is not yet clear (provocative: after reading this one may ask why we need theorists and model-builders)
- Left out some specific models mentioned (e.g. leptoquark, monopoles...)
- Needs better connections to BSM part of neutrino strategy / experiments
- Would like to tie it more to strategic choices, but given space limitations and scope this necessarily means we would have to prioritize (by leaving things out)

DARK MATTER

- Shortcoming of the SM, empirical evidence
 - it's there, but is it a particle? if so does it interact with the SM?
- Many possible theories, roughly grouped and ordered by mass / magnitude of interaction with SM

WIMP

 Can and will be addressed by colliders (HL/HE-LHC, FCC-ee, FCC-hh), direct detection (XENON1T, IceCube and future upgrades), indirect detection

Dark sector / light DM mass models

 Can be addressed by the above, but better sensitivity with dedicated experiments (LDMX, SHIP, HIBEAM/NNBAR)

Axions and ALP

- Need dedicated facilities [no one talked about this in Sweden]
- Crucial to link ECFA and APPEC on these (and other) topics

HIGGS

- Newly discovered particle → new chance to probe sectors connected to it
 - First time in history of particle physics that we start to be sensitive to scalar particles with Yukawa-like couplings
 - Start exploration at HL-LHC
- Higgs precision searches could lead to indirect discoveries
 - Links with SM strategy
- Di-Higgs production could be enhanced
 - ▶ Best sensitivity at future colliders (FCC-ee, HE-LHC/FCC-hh)
 - Importance of being above ttbar threshold for ILC

SUSY AND OTHER BSM

- SUSY still appealing albeit not as natural ("solve 2 out of 3 problems") and not around the corner
 - Can keep pushing energy frontier for strong production (HE-LHC/FCC-hh)
 - ▶ Emphasis on rare (direct EW production) and difficult (long-lived) signatures
 - This point is valid for all BSM and all machines: design detectors and trigger systems accordingly
 - FCC-ee best suited for direct EW production
- Complementarity between indirect precision (B-factories) and direct discoveries
 - Do not close the door to machines at the energy frontier (HE-LHC/FCC-hh)
 - especially if informed by hints in B-factories
 - Serendipitous discoveries are also important (e.g. muon, tau)

IDEA FOR OVERVIEW

- A table matching facilities to models
- Not yet filled, needs everyone's expertise
- Is this useful input?

Topic	HL-LH C	HE-LH C	ILC (250/50 0)	CLIC (380/150 0/3000)	FCC-e e	FCC- hh	LDM X	HIBEAM@E SS (+NNBAR)	IceCube upgrade
DM: WIMPs	х	х	Х	Х	х	х			
DM: Dark Sectors	х	Х	Х	х			х	х	
DM: Sterile nu									
DM: axions/ALPs									
Neutrinos									
Strong SUSY	х					х			
EW SUSY	х								
Higgs: self-coupling (di-Higgs search)		30%				10%			
Charged Higgs									