Overview of ATLAS detector upgrade projects for HL-LHC in Sweden

"A summary of summaries"

Partikeldagarna 2018, Lund, Oct 16-17, 2018

Christian Ohm (KTH), also obo Lund, Stockholm and Uppsala ATLAS groups

ATLAS Sweden Day (Monday) featured an upgrade session

Evolution of the LHC data set

So far collected about 30 fb⁻¹ at $\sqrt{s} = 7-8$ TeV and nearly 150 fb⁻¹ at 13 TeV!

Standard Model holds up to experimental tests at LHC

Measurements of SM processes agree with predictions over many orders of magnitude!

Standard Model holds up to experimental tests at LHC

Measurements of SM processes agree with predictions over many orders of magnitude! \Rightarrow can model **backgrounds** to beyond-SM physics!

Results so far: exclusion limits for models of beyond-SM physics

J	ATLAS SUSY Searches* - 95% CL Lower Limits										ATLAS Prelimin $\sqrt{s} = 7, 8, 13$		
	Model	ε,μ,τ,γ	Jets	E _T miss	∫£ dt[fl	o ⁻¹]	Ma	ss limit		$\sqrt{s} = 7$	8 TeV √s = 13 TeV	Reference	
s	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{t}_{1}^{0}$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	 (2x, 8x Degen.) (1x, 8x Degen.) 		0.43	0.9	1.55	m(\hat{t}_1^0)<100 GaV m(\hat{q})=m(\hat{t}_1^0)=5 GaV	1712.02532 1711.03301	
Inclusive Searche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow g\tilde{g}\tilde{\chi}_1^0$	0	2-6 jets	Yes	36.1	2 2			Forbidden	0.95-1.6	m(t ⁰ ₁)<200 GeV m(t ⁰ ₁)=900 GeV	1712.02332 1712.02332	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell\ell)\tilde{\chi}_{1}^{0}$	3 e, μ ee, μμ	4 jets 2 jets	Yes	36.1 36.1	2 2				1.85	m(ξ ⁰ ₁)<800 GeV m(ξ)-m(ξ ⁰ ₁)=50 GeV	1706.03731 1805.11381	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{t}_{1}^{0}$	0 З е, µ	7-11 jets 4 jets	Yes	36.1 36.1	2 2			0.96	1.8	m(t ⁰ ₁) <400 GeV m(t)=m(t ⁰ ₁)=200 GeV	1708.02794 1706.03731	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow d\tilde{\chi}_1^0$	0-1 e,μ 3 e,μ	3 b 4 jets	Yes	36.1 36.1	8 8				1.25	m(t ⁰)-200 GeV m(t ¹)=300 GeV	1711.01901 1706.03731	
3rd gen. squarks direct production	$\hat{b}_1\hat{b}_1, \hat{b}_1 \rightarrow b\hat{\chi}_1^0/i\hat{\chi}_1^*$		Multiple Multiple Multiple		36.1 36.1 36.1	$ \bar{b}_1 \\ \bar{b}_1 \\ \bar{b}_1 $	Forbidden	Forbidden Forbidden	0.9 0.58-0.82 0.7		$\begin{array}{c} m(\tilde{\ell}_1^0){=}300~{\rm GeV}, {\sf BR}(h\tilde{\ell}_1^0){=}1 \\ m(\tilde{\ell}_1^0){=}300~{\rm GeV}, {\sf BR}(h\tilde{\ell}_1^0){=}{\sf BR}(r\tilde{\ell}_1^+){=}0.5 \\ (\tilde{\ell}_1^0){=}200~{\rm GeV}, m(\tilde{\ell}_1^+){=}300~{\rm GeV}, {\sf BR}(r\tilde{\ell}_1^+){=}1 \end{array}$	1708.09286, 1711.03301 1708.09286 1706.03731	
	$\tilde{b}_1 \tilde{b}_1, \tilde{i}_1 \tilde{i}_1, M_2 = 2 \times M_1$		Multiple Multiple		36.1 36.1	iι iι Forbidden			0.7	m(² ₁)=60 GaV m(² ₁)=200 GaV		1709.04183, 1711.11520, 1708.03247 1709.04183, 1711.11520, 1708.03247	
	$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow W b \tilde{\ell}_1^0 \text{ or } i \tilde{\ell}_1^0$ $\tilde{i}_1 \tilde{i}_1, \tilde{H} LSP$	0-2 e,µ	0-2 jets/1-2 Multiple Multiple	b Yes	36.1 36.1 36.1	<i>ι</i> <i>ι</i> <i>ι</i> <i>ι</i>	Forbidden		1.0 0.4-0.9 0.6-0.8	$m(\xi^0)=1$ GeV $m(\xi^0)=150$ GeV, $m(\xi^+)-m(\xi^0)=5$ GeV, $f_1 = f_2$, $m(\xi^0)=300$ GeV, $m(\xi^+)-m(\xi^0)=5$ GeV, $f_1 = f_2$.		1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520	
	$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP $\tilde{t}_1 \tilde{t}_1$, $\tilde{t}_1 \rightarrow c \tilde{k}_1^0 / c \tilde{c}_1 c \rightarrow c \tilde{k}_1^0$	0	Multiple 2c	Yes	36.1 36.1	li İs			0.48-0.84	$m(\tilde{t}_1^0)$ =150 GeV, $m(\tilde{t}_1^+)$ - $m(\tilde{t}_1^0)$ =5 GeV, $\tilde{t}_1 = \tilde{t}_L$ $m(\tilde{t}_1^0)$ =0 GeV		1709.04183, 1711.11520 1805.01649	
		0	mono-jet	Yes	36.1	$\frac{I_1}{I_1}$		0.46 0.43		m(r ₁ ,z)-m(t ² ₁)=50 GeV m(r ₁ ,z)-m(t ² ₁)=5 GeV		1805.01649 1711.03301	
	$I_2I_2, I_2{\rightarrow}I_1 + h$	1-2 e,µ	4 b	Yes	36.1	i,			0.32-0.88		$m(\tilde{t}_1^0)=0$ GeV, $m(\tilde{r}_1)-m(\tilde{t}_1^0)=180$ GeV	1706.03986	
EV direct	$\tilde{\chi}_1^* \tilde{\chi}_2^0$ via WZ	2-3 e, μ ee, μμ	≥1	Yes Yes	36.1 36.1	$\frac{\hat{\chi}_{1}^{*}/\hat{\chi}_{2}^{0}}{\hat{\chi}_{1}^{*}/\hat{\chi}_{2}^{0}} = 0.17$			0.6		m(ξ ⁰ ₁)=0 m(ξ ⁰ ₁)-m(ξ ⁰ ₁)=10 GeV	1403.5294, 1806.02293 1712.08119	
	$\begin{array}{l} \tilde{\chi}_1^* \tilde{\chi}_2^0 \; \text{via} \; Wh \\ \tilde{\chi}_1^* \tilde{\chi}_1^* / \tilde{\chi}_2^0 , \tilde{\chi}_1^* {\rightarrow} \tilde{\tau} v(\tau \tilde{v}) , \tilde{\chi}_2^0 {\rightarrow} \tilde{\tau} \tau(v \tilde{v}) \end{array}$	<i>tt/tγγ/tbb</i> 2 τ		Yes Yes	20.3 36.1	$\frac{\hat{\chi}_{1}^{a}/\hat{\chi}_{2}^{a}}{\hat{\chi}_{1}^{a}/\hat{\chi}_{1}^{a}}$ $\hat{\chi}_{1}^{a}/\hat{\chi}_{1}^{a}$ 0.:	0.26		0.76	$m(\tilde{t}_1^0)=0$ $m(\tilde{t}_1^0)=0, m(\tau, \tau)+0.5(m(\tilde{t}_1^0)-m(\tilde{t}_1^0))$ $m(\tilde{t}_1^0)-m(\tilde{t}_1^0)=100.04V, m(\tau, \tau)+0.5(m(\tilde{t}_1^0)-m(\tilde{t}_1^0))$ $m(\tilde{t}_1^0)-m(\tilde{t}_1^0)=0$ $m(\tilde{t}_1^0)-m(\tilde{t}_1^0)=5$		1501.07110 1708.07875 1708.07875	
	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} {\rightarrow} \ell \tilde{\ell}_1^0$	2 e, μ 2 e, μ	0 ≥ 1	Yes Yes	36.1 36.1	i i 0.18		0.5				1803.02762 1712.08119	
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 4 e, µ	$\geq 3b$ 0	Yes Yes	36.1 36.1	B 0.13-0	0.3		0.29-0.88	$\begin{array}{c} BR(t_1^0 \to kG) = 1 \\ BR(t_1^0 \to 2G) = 1 \end{array}$		1806.04030 1804.03602	
υ.,	$\operatorname{Direct} \tilde{\mathcal{X}}_1^* \tilde{\mathcal{X}}_1^- \operatorname{prod.}, \operatorname{long-lived} \tilde{\mathcal{X}}_1^*$	Disapp. trk	1 jet	Yes	36.1	$\hat{\chi}_{1}^{\pm}$ $\hat{\chi}_{1}^{\pm}$ 0.15		0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019	
e e	Stable g R-hadron	SMP			3.2	8				1.6		1606.05129	
Long	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{t}_1^0$.	Multiple	Vez	32.8	ĝ (τ(ĝ) =100 m, 0.2	rs)			1.6	2.4 m(ξ ⁰ ₁)=100 GeV	1710.04901, 1604.04520	
	GMSB, $\chi_1 \rightarrow \gamma G$, long-twed χ_1 $\tilde{\chi}_1^0 \rightarrow orr/our/our$	4 γ displ. ee/eµ/μ	μ -	-	20.3	x1 2		0.44		1.3	1 <r(1)<3 model<br="" na,="" sps8="">6 <rr(8)<1000 m(8)="1" mm,="" td="" tev<=""><td>1504.05162</td></rr(8)<1000></r(1)<3>	1504.05162	
ЧЧ	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	eu.et.ut			3.2	8,				1.9	λ ₁₁₁ =0.11, λ _{112/111/210} =0.07	1607.08079	
	$\tilde{\chi}_1^* \tilde{\chi}_1^* / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell_{YY}$	4 e, µ	0	Yes	36.1	$\hat{\chi}_{1}^{\pm}/\hat{\chi}_{2}^{\pm} = [\lambda_{00} \neq 0, \lambda_{124}]$	≠ 0]		0.82	1.33	m(F ³ ₁)=100 GeV	1804.03602	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$	0 4	-5 large-R j Multiple	ets -	36.1 36.1	∦ [m(²)=200 GeV, 1 ∦ [4] ₁ =2e-4, 2e-5]	100 GeV]		1.0	1.3 1.9 5 2.0	Large X [*] ₁₁₂ m(²) l=200 GeV him-like	1804.03568 ATLAS-CONF-2018-003	
	$\tilde{r}\tilde{r} = \tilde{r} \rightarrow thr / \tilde{r} \rightarrow t\tilde{\chi}^0 = \tilde{\chi}^0 \rightarrow thr$		Multiple		36.1	g [A* =1, 1e-2]				1.8 2	m(R ²)=200 GeV, bino-like	ATLAS-CONF-2018-003	
	$\tilde{u}, \tilde{\iota} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow t b s$		Multiple		36.1	$\hat{g} = [A_{323}^{0} \circ 2 \otimes 4, 1 \otimes 2]$		0	.55 1.0	5	m(\$1)=200 GeV, bino-like	ATLAS-CONF-2018-003	
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	0	2 jets + 2 i	5 · ·	36.7	$\tilde{t}_1 = [qq, bz]$		0.42	0.61			1710.07171	
	$I_1I_1, I_1 \rightarrow b\ell$	2 e, µ	2 b		36.1	h				0.4-1.45	$BR(\tilde{r}_1 \rightarrow bv/b\mu) > 20\%$	1710.05544	
						L]	
Only	a selection of the available m	ass limits on	new state	es or	1	0-1				1	Mass scale [TeV]		

simplified models, c.f. refs. for the assumptions made.

Extensive program of searches \Rightarrow No evidence of SUSY particles!

Results so far: exclusion limits for models of beyond-SM physics

	Notica Searci	ies -	957	~ UL	Spper Exclusion Linnis		AIL	45 Preliminar
Status: July 2	018					$\int \mathcal{L} dt = (3)$	3.2 – 79.8) fb ⁻¹	√s = 8, 13 TeV
Model	ℓ,γ	Jets†	E ^{miss} T	∫£dt[fb	¹] Limit	, ,		Reference
ADD G _{KK} + 8 ADD non-reso ADD Q8H ADD BH high BUK RS G _{KK} → 7 BuK RS G _{KK} → 2 EUED / RPP	$\begin{array}{cccc} iq & 0 e, \mu \\ \text{ant} \gamma\gamma & 2\gamma \\ \rho \tau & \geq 1 e, \mu \\ \text{it} & -\gamma \\ \gamma & 2\gamma \\ \text{wWV/ZZ} & \text{multi-chan} \\ \text{ott} & 1 e, \mu \\ 1 e, \mu \\ 1 e, \mu \end{array}$	1 - 4 j - 2 j ≥ 2 j ≥ 3 j - nel ≥ 1 b, ≥ 1 J ≥ 2 b, ≥ 3	Yes - - - - (2) Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1 36.1	Mo	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2 \\ n=3 \ \text{HLZNLO} \\ n=6 \\ n=6, \ M_D=3 \ \text{TeV, not BH} \\ n=6, \ M_D=3 \ \text{TeV, not BH} \\ k/M_P=0.1 \\ k/M_P=1.0 \\ \Gamma/m=15\% \\ \Gamma/m=15\% \\ \mathrm{Trier}(1,1), \ 8(A^{(1,1)} \to \mathrm{rr})=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.022586 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823 1803.06678
$\begin{array}{c} \mathrm{SSM}\ Z' \to \ell\ell \\ \mathrm{SSM}\ Z' \to \tau\tau \\ \mathrm{Leptophobic}\ 2 \\ \mathrm{SSM}\ W' \to \tau \\ \mathrm{SSM}\ W' \to \tau \\ \mathrm{SSM}\ W' \to \tau \\ \mathrm{HVT}\ V' \to W \\ \mathrm{HVT}\ V' \to W \\ \mathrm{LRSM}\ W'_R \to \end{array}$	$2 e, \mu$ 2τ $\rightarrow bb$ $\rightarrow tt$ $1 e, \mu$ $1 e, \mu$ 1 r 1τ $/ \rightarrow qqqq model B 0 e, \mu1/2 H model B$ multi-chan b multi-chan	- 2 b ≥ 1 b, ≥ 1J - 2 J nel	- - Yes Yes -	36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1 36.1	2 max 45 TeV 2 max 2.42 TeV 2 max 2.1 TeV 2 max 2.1 TeV 40 max 2.0 TeV 40 max 2.7 TeV 40 max 2.7 TeV 40 max 2.7 TeV 40 max 2.7 TeV 40 max 2.23 TeV 40 max 2.25 TeV	eV.	$\Gamma/m = 1\%$ $\delta_{V} = 3$ $g_{V} = 3$	1707.02424 1709.07242 1805.02299 1804.10823 ATLAS-CONF-3018-017 1801.08992 ATLAS-CONF-3018-016 1712.08518 CERN-EP-3018-142
Cl qqqq Cl l l qq Cl ttt	_ 2 ø, µ ≥1 ø,µ	2 j 	- Yes	37.0 36.1 36.1	A A A 2.57 TeV		21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{ti} = 4\pi$	1703.09127 1707.02424 CERN-EP-2018-174
Axial-vector m Colored scalar VV _{XX} EFT (D	diator (Dirac DM) 0 e, μ mediator (Dirac DM) 0 e, μ tac DM) 0 e, μ	1 - 4j 1 - 4j $1 J_i \le 1j$	Yes Yes Yes	36.1 36.1 3.2	m _{und} 1.55 TeV m _{und} 1.57 TeV M, 700 GeV		g_q =0.25, g_q =1.0, $m(\chi) = 1$ GeV g =1.0, $m(\chi) = 1$ GeV $m(\chi) < 150$ GeV	1711.03301 1711.03301 1608.02372
Scalar LO 1 st Scalar LO 2 rd Scalar LO 3 rd	en 2.e gen 2.μ jen 1.e.μ	≥ 2 j ≥ 2 j ≥1 b, ≥3	- Yes	3.2 3.2 20.3	LO maios 1.1 TeV LO maios 1.05 TeV LO maios 640 GeV		$\beta = 1$ $\beta = 1$ $\beta = 0$	1605.06035 1605.06035 1508.04735
VLQ $TT \rightarrow H$ VLQ $BB \rightarrow W$ VLQ $T_{5/2}T_{5/2}$ VLQ $Y \rightarrow WL$ VLQ $B \rightarrow Hb$ VLQ $QQ \rightarrow W$	/Zt/Wb + X multi-chan t/Zb + X multi-chan $t_{5(1} \rightarrow Wt + X$ 2(SS)/23 $+X$ 1 e, μ $+X$ 0 $e, \mu, 2$ qWq 1 e, μ	nel nel ≠,µ ≥1 b, ≥1 ≥ 1 b, ≥ 1 y ≥ 1 b, ≥ 1 ≥ 4 j	Yes Yes Yes Yes	36.1 36.1 36.1 3.2 79.8 20.3	T mais 1.27 TeV B mais 1.24 TeV V mais 1.84 TeV V mais 1.84 TeV B mais 1.21 TeV Q mais 60 Qet		$\begin{array}{l} SU(2) \mbox{ doublet} \\ SU(2) \mbox{ doublet} \\ \mathcal{B}(\mathcal{T}_{1/2} \rightarrow Wb) = 1, \mbox{ c}(\mathcal{T}_{3/2}Wb) = 1 \\ \mathcal{B}(Y \rightarrow Wb) = 1, \mbox{ c}(YWb) = 1/\sqrt{2} \\ \kappa_{B} = 0.5 \end{array}$	ATLAS-CONF-2018-032 ATLAS-CONF-2018-032 CERN-EP-2018-171 ATLAS-CONF-2018-072 ATLAS-CONF-2018-024 1509.04281
Excited quark Excited quark Excited quark Excited quark Excited lepton Excited lepton	$ \begin{array}{cccc} r^{*} \rightarrow qg & - \\ r^{*} \rightarrow q\gamma & 1\gamma \\ r^{*} \rightarrow bg & - \\ r^{*} & 3e, \mu \\ r^{*} & 3e, \mu, \tau \end{array} $	2j 1j 1b,1j -		37.0 36.7 36.1 20.3 20.3	q* mass 5.0° q* mass 5.3° b* mass 2.6 TeV f* mass 2.6 TeV f* mass 3.0 TeV * mass 1.5 TeV	TeV V	only u^{*} and $d^{*}, \Lambda = m(q^{*})$ only u^{*} and $d^{*}, \Lambda = m(q^{*})$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Type III Seesa LRSM Majorar Higgs triplet H Higgs triplet H Monotop (non Multi-charged Magnetic mon	$\begin{array}{cccc} & 1 \ e, \mu & \\ a \ v & 2 \ e, \mu & \\ c & \rightarrow \ell \ell & 2, 3, 4 \ e, \mu & \\ c & c & p \ o \ e \ s \ p \ o \ o \ f & e, \mu & \\ a \ c & c \ p \ o \ e \ s \ p \ o \ f & c \ h \ e \ h \ h$	≥ 2 j 2 j SS) - 1 b - -	Yes - - Yes - -	79.8 20.3 36.1 20.3 20.3 20.3 7.0	M ² mass 500 GeV M ² mass 2.0 TeV M ² mass 6.07 GeV M ² mass 7.0 GeV M ² mass 7.0 GeV M ² mass 1.0 V		$\begin{split} m(W_k) &= 2.4 \text{ TeV, no mixing} \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{**} \to \ell \tau) &= 1 \\ s_{max}, m &= 0.2 \\ \text{DY production}, q &= 5 \sigma \\ \text{DY production}, q &= 1 \\ g_D, \text{ spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1506.08020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Same for other (non-SUSY) BSM physics \Rightarrow no evidence of new physics.

Most published results at $\sqrt{s} = 13$ TeV so far use ~ 30 fb⁻¹ \Rightarrow HL-LHC will deliver 100x as much!

Pileup at the HL-LHC

Real-life event (i.e. crossing of pp bunches) with \sim 130 reconstructed vertices!

Pileup at the HL-LHC ($\mathcal{L} = 7.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$)

- Beam spot: RMS 45 mm
- \blacktriangleright Pileip of up to 200 pp interactions per bunch crossing ($\langle \mu \rangle = 200)$

 \Rightarrow 1.6 vertices/mm on average

Pileup: why is it bad?

Need to associate: tracks to vertices, tracks to objects \Rightarrow objects to vertices With so many more collisions, detectors will need to withstand much more radiation!

Upgrades of the ATLAS detector (full overview in scoping document)

Upgrades of the ATLAS detector (full overview in scoping document)

What is the ATLAS Inner TracKer (ITk)?

- \blacktriangleright HL-LHC (pileup $\langle \mu \rangle \approx 200$, radiation damage, triggering)
- New ATLAS Tracking detector
- ► Full silicon...

What is the ATLAS Inner TracKer (ITk)?

- \blacktriangleright HL-LHC (pileup $\langle \mu \rangle \approx 200 \text{, radiation damage, triggering)}$
- New ATLAS Tracking detector
- ► Full silicon...

What is the ATLAS Inner TracKer (ITk)?

- \blacktriangleright HL-LHC (pileup $\langle \mu \rangle \approx 200$, radiation damage, triggering)
- New ATLAS Tracking detector
- ► Full silicon...

Lund

Scandinavian plan

- Four participating institutes in the Scandinavian ITk
 - Lund University
 - Uppsala University
 - Niels Bohr Institute
 - University of Oslo
- \blacktriangleright Pledged for $\approx 10\%$ of the whole end-caps
 - $\, {\scriptstyle \smile} \, 432 \ {\rm modules} \ {\rm of} \ {\rm two} \ {\rm types} \ {\rm R1} \ {\rm and} \ {\rm R3} \ 50/50 \ {\rm split}$
- Production in industry (NOTE)
- Test and qualification of modules in institutes

Swedish Contributions

Uppsala / NOTE

- Module Assembly and manufacturing
 - Gluing expertise
 - Wire bonding expertise
 - Experience from SCT

Lund

- Module testing
 - Hyrbid testing before mounting on sensor
 - Full module test
 - DAQ expertise

Uppsala / NOTE

- Module Assembly and manufacturing
 - Gluing expertise
 - Wire bonding expertise
 - Experience from SCT

Lund

- Module testing
 - Hyrbid testing before mounting on sensor
 - Full module test
 - DAQ expertise

Hardware Tracking for the Trigger (HTT): Uppsala

- \blacktriangleright 5-7x design luminosity \Rightarrow 5-7x more events with e.g. μ w/ $p_{\rm T}>20~{\rm GeV}$
- Bandwidth/resources limit how much more can be recorded ⇒ raise thresholds, or improve trigger-level reco or raise thresholds!
- Also: tracking most CPU-intense part of reco already now, huge challenge to run full-scan tracking using software in time-critical trigger processing at (µ) = 200!

Hardware Tracking for the Trigger (HTT): Uppsala

- \blacktriangleright 5-7x design luminosity \Rightarrow 5-7x more events with e.g. μ w/ $p_{\rm T}>20~{\rm GeV}$
- Bandwidth/resources limit how much more can be recorded ⇒ raise thresholds, or improve trigger-level reco or raise thresholds!
- Also: tracking most CPU-intense part of reco already now, huge challenge to run full-scan tracking using software in time-critical trigger processing at ⟨µ⟩ = 200!
- \Rightarrow Hardware Tracking for the Trigger

Baseline trigger architecture

- Level-0 (L0) muon and calo triggers followed by Event Filter (EF).
- EF takes 1000 kHz of events from the L0 hardware trigger.
- L0 output is combined with the regional HTT (rHTT) output to reduce the rate to 400 kHz. Tracking in Rols.
- EF can request the global HTT (gHTT) to help with full-event tracking at an expected rate of 100 kHz.
- The final rate is 10 kHz.

Mikael Mårtensson

October 15, 2018

Pattern matching

- Using 8 ITk layers; up to 3 pixel layers.
- Pixels and strips are combined to coarser-resolution *super-strips*.
- Particle tracks will cross a pattern (set) of super-strips => program AM chips with these patterns.
- The AM will then tell you if a pattern of super-strips is consistent with particle track.
- Patterns trained using tracks from simulated muons.
- Each $\Delta \eta = 0.2$ by $\Delta \phi = 0.2$ Rol trained separately.
- We have 1 million patterns per Rol.
- Outputs *roads* to the track fitting step.

Mikael Mårtensson

October 15, 2018

Hardware Tracking for the Trigger (HTT): Uppsala

Uppsala group responsible for design and testing of Pattern Recognition Mezzanine cards featuring:

- Associative Memories that hold track patterns
- FPGAs that perform first track fitting

Upgrades of the ATLAS detector

Upgrades of the ATLAS detector

Now 1 SuperDrawer per section A 4 MiniDrawers per section

Stockholm is responsible for producing 850 (1200) DaughterBoards including spares

- The DaughterBoard is responsible for:
- Communication with off-detector electronics via a 9.6 Gbps uplink and a 4.8 Gbps downlink
- It is highly redundant and designed to minimize risk for failure and in case of failure minimize its consequences
- It allows local and remote reprogramming of on-detector FPGAs and their PROMs
- Physics and calibration data is acquired from PMTs and FE-boards via the MainBoard
- Monitors temperature, current, voltage
- Controls the Cs-calibration system
- and the on-detector HV-system (the back-up HV-system)

DBv5

Several DB prototypes have been developed version 4 has proven to be fully functional but changing to last version of the FPGA used (Xilinx Kintex) improved radiation tolerance (~30 times) and communication reliability.

In the transition we also changed from single mode fibers to multimode gaining robustness and better selection of components Migration from 2 QSFP to 4 SFP+ 6 links - saving fibers and connectors.

The firmware has also been restructured and simplified

Tile calorimeter front-end electronics: Stockholm

Lots of tests: test beam, irradiation and B-field!

Tile calorimeter front-end el

ATLAS

Tile Calorimeter Phase-II Upgrade

Technical Design Report

Tile calorimeter front-end el

ATLAS

Tile Calorimeter Phase-II Upgrade

Technical Design Report

Tile calorimeter front-end el

ATLAS Tile Calorimeter Phase-II Upgrade

Technical Design Report

Christophe Clement (SU) also overall TileCal Upgrade Project Leader!

Back to pileup $\langle \mu \rangle = 30$ Hard-scatter jet "Stochastic" pile-up jet **QCD** pile-up jet Hard scatter Pile-u

Back to pileup $\langle \mu \rangle = 200$ Hard-scatter jet "Stochastic" pile-up jet **QCD** pile-up jet Hard scatter Pile-u

A new idea: Exploit the time dimension of the beam spot

The solution: Exploit the time dimension of the beam spot

The solution: Exploit the time dimension of the beam spot

- Tracks coming from z region look like they're from one vertex
- ► Expect up to ~10 vertices in region ~ z₀ resolution

The solution: Exploit the time dimension of the beam spot

- Tracks coming from z region look like they're from one vertex
- ► Expect up to ~10 vertices in region ~ z₀ resolution

- With time info, the vertices can be resolved!
- Time projection (left) has bin size of 30 ps

(No crossing angle here, AU for *z*-scale, animation for illustration only!)

Forward region most challenging

Measure time of tracks and thereby vertices \Rightarrow improve track-to-vertex association!

Forward region most challenging

Measure time of tracks and thereby vertices \Rightarrow improve track-to-vertex association!

Forward region most challenging

Measure time of tracks and thereby vertices \Rightarrow improve track-to-vertex association!

 $\langle \mu \rangle = 200$

High-Granularity Timing Detector (HGTD)

HGTD will provide timing measurements for charged particles in $2.4 < \eta < 4.0$.

High-Granularity Timing Detector (HGTD): KTH

Mitigate pileup by exploiting that beam spot has *time dimension*, spread $\sim 200~{\rm ps}$

- ► Two endcap disks at z = ±3.5 m, Si-based Low Gain Avalanche Diode technology, 1.3 × 1.3 mm² pixels
- ► $\sigma_t = 30 \text{ ps/track}$ in acceptance: $120 \text{ mm} < R < 640 \text{ mm} \Rightarrow 2.4 < |\eta| < 4.0$
- KTH responsibility: functionality to use as luminometer ⇒ off-detector FPGA-based electronics boards

Coordination responsibilities:

- Bengt L-J: Electronics Coordinator
- Jonas S: Luminosity & Trigger/DAQ Coordinator
- ► CO: editor of Expression of Interest and Technical Proposal ⇒ approved!

High-Granularity Timing Detector (HGTD): KTH

Coordination responsibilities:

- Bengt L-J: Electronics Coordinator
- Jonas S: Luminosity & Trigger/DAQ Coordinator
- ► CO: editor of Expression of Interest and Technical Proposal ⇒ approved!

LUminosity Cherenkov Integrating Detector (LUCID): Lund

- ► Entire ATLAS physics program depends on being able to measure luminosity
- Challenges for detectors:
 - Provide reliable measurements at very low (10⁻³) and high (200 at HL-LHC) number of interactions per bunch crossing
 - Stable detector performance: measurement always needed, typically special LHC fill per year for calibrations
 - Needs to be insensitive to activated material ("afterglow")
 - Needs to survive high levels of radiation
- ▶ LUCID is and has been main luminosity detector in ATLAS so far in Run 2
- Current detector will not work at HL-LHC, looking at options for similar uncomplicated but intelligent and versatile luminosity detectors with redundancy
- Vincent Hedberg (Lund) with technicians/engineers designed and constructed LUCID at CERN, he has been LUCID Project Leader and convener for Luminosity Group for many years, now thinking about upgrades for higher luminosities

The present detector

Problems at the high luminosity LHC

With μ -values going up to 140-200 the present type of quartz photomultiplier detector will saturate (hits in every bunch crossing).

Vacuum equipment will also be installed at the present LUCID location.

Future Layout : VAX integrated

Possible solutions:

- Place a new quartz photomultiplier detector in another location. ٠
- Build guartz fiber detectors monitored by Bi-207.

A LUCID fiber detector for run 3 and 4

The present idea for a LUCID-3 detector is a fiber detector with a Bi-207 source at the end of the fiber bundles that can provide Cherenkov light for calibrations.

Summary of ATLAS upgrade activities in Sweden

► All-silicon Inner Tracker (ITk): Lund and Uppsala

- \blacktriangleright Increased pileup \Rightarrow need improved performance, more radiation tolerant detector needed
- Readout: current ID can't handle HL-LHC occupancies, ITk readout enables new hardware-based tracking in the trigger system

► Hardware Track Trigger (HTT): Uppsala

- \blacktriangleright Hardware tracking can cope with high pileup \Rightarrow improve trigger \Rightarrow unchanged thresholds
- ► Uppsala responsible for design and testing of Pattern Recognition Mezzanine cards

► Tile calorimeter: Stockholm

- Design and production of 1200 daughter boards
- Critical part of readout electronics, all data goes through this path

► High-Granularity Timing Detector (HGTD): KTH

- Silicon precision-timing detector exploits time spread of beam spot
- ► KTH responsible for luminometer functionality
- ► LUminosity Cherenkov Integrating Detector (LUCID): Lund
 - ► Luminosity critical for entire ATLAS physics program, LUCID main detector so far
 - ► HL-LHC pileup requires upgraded detector: several prototypes being investigated

All projects moving forward!

Back-up

First results with a prototype

- A group at the university of Alberta has done the first prototype tests.
- □ A 2.45 m long PUV800 quartz fiber bundle with 35 fibers was used.
- Each end was epoxied in ferrules and polished.
- One fiber end was connected to a Hamamatsu R760 photomultiplier.
- □ 50 ml of a Bi-207 solution was applied directly to the fibers on the other end and was let to dry.

Another possibility being explored for run 4

The possibility of installing photomultipliers with Bi-207 in the inner detector region for run 4 is under investigation.

These photomultipliers have to be insensitive to the magnetic field and radiation hard: Micro Channel Plate PMTs and Silicon PMTs are possibilities.

Equipment in institutes (Excluding NOTE)

✓ Ready to be used ✓ Needs to be brought up to specs
 ✗ Plans to procure / designing

	Clean room	Metrology	Probe station	Wire bonder	Thermal Cycling	DAQ Setup	Storage
Lund	√	×	×	×	×	 Image: A start of the start of	×
Uppsala	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark

Timescale

- All sites required to pass inspection test to make sure to be up to collaboration standard
- Done shortly before Pre-prod, 5% of total pledged amount
- Installation of ITk during LS3

The HGTD

The HGTD will provide time measurements for objects in the forward regions of the ATLAS detector.

- Coverage: $2.4 < |\eta| < 4.0$
- Target $\sigma_t^{track} \sim 30 \text{ ps}$

Design based on $1.3 \times 1.3 \text{ mm}^2$ silicon pixels (2 × 4 cm² sensors) \rightarrow optimised for < 10% occupancy and small capacitance

Number of hits per track:

- 2 in 2.4<|η|<3.1
- 3 in 3.1<|η|<4.0

Sensors

Low Gain Avalanche Detectors

Pioneered by CNM Barcelona and developed within 5-year CERN- RD50 effort

Necessary time resolution achieved in test-beam studies at CERN and Fermilab

Good charge collection, gain ~20, time resolution before/after irradiation

Time resolution better than 50 ps per hit up to 5×10^{15} neq/cm2 with bias voltage 10% below breakdown

Successful prototypes from several vendors

Readout

ALTIROC ASIC bump-bonded to sensors Single pixel read-out (225 channels/ASIC) Meets radiation hardness / timing requirements Reads out:

at 1 MHz, after trigger: full hit information

at 40 MHz: **number of hits** at outer radii for each ASIC (real-time, per-crossing luminosity measurement with time-sideband subtraction)

HGTD as luminometer

G. Salam at LHCP 2016:

Luminosity is potentially *keystone measurement* for LHC precision programme

- Count hits within 320 mm < R < 640 mm
- Time-averaged hit multiplicity per BCID
- Estimate of better than 10⁻³ stat uncertainty using 1 s integration time
- Out-of-time sideband subtraction
- Online lumi measurement 40 MHz readout intended for real-time feedback to LHC lumileveling
- Could provide low-latency per-BCID estimate for trigger

Swedish ATLAS day