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Introduction

“Space Charge”

In beam physics, this is usually taken to mean the Coulomb
potential between particles in a bunch or continuous beam. For
relativistic cases, this is an insufficient approximation.

I The Liénard–Wiechert potentials: a fundamental definition of
space charge.

I Two-particle force

I Multiparticle picture

I Simplifying pairwise distance calculation
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The Liénard–Wiechert Potentials

Φ =

 q(
1− ~βs(t) · n̂

)
R


t=tr

; ~A =

 q ~βs(t)(
1− ~βs(t) · n̂

)
R


t=tr

These are derived solely from an assumption of EM fields
propagating at c . The unit vector n̂ points from the source to the
test particle. The quantity R is the distance between the two.1,2

The dependence on
~β

1−~β·n̂
implies an attractive limit of ~β → −1

but a divergence as ~β → 1 for ~β · n̂ ≈ 1.

1Jackson, Classical Electrodynamics, pp661–663.
2Feynman, Leighton, and Sands, The Feynman Lectures on Physics, Vol. 2: Mainly Electromagnetism and

Matter, pp14-4,25-5.
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The Liénard–Wiechert Potentials

The ~E and ~B field definitions resulting from these potentials are
more complicated.

~E = q

[
n̂ − ~β

γ2(1− ~β · n̂)3R2

]
t=tr

+
q

c

 n̂ ×
{

(n̂ − ~β)× ~̇β
}

(1− ~β · n̂)3R


t=tr

~B = [n̂ × ~E ]
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Two-particle Force

Ignoring radiation, the Lorentz-forces in the n̂ direction are then

F~B =
−q2β2(1− β2)(1− cos2(θ))

(1− βcos(θ))3 R
n̂

F~E =
q2(1− β2) (1− cos(θ))

(1− βcos(θ))3 R
n̂

Ben Folsom Space Charge in Accels. 5 / 15
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Two-particle Force

Ben Folsom Space Charge in Accels. 6 / 15



Introduction
The Liénard–Wiechert Potentials

Two-particle Force
Simplifying Pointwise Distance Calculation

Two-particle Force
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Multiparticle Picture

For an ensemble, the ~A contributions at an exterior point are then
distinct:

Folsom and Laface, ”Beam Dynamics with Covariant Hamiltonians”. (With thanks to V. Vislavicious)
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Simplifying Pointwise Distance Calculation

A typical bunch in an accelerator beamline contains a population
N of roughly 1010 to 1013 particles. We can reduce the number of
operations required for each Cartesian distance calculations can be
reduced by using Archimedian spiral coordinates.3

3Parker, “Dynamics of the interplanetary gas and magnetic fields.”
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Simplifying Pointwise Distance Calculation

Here r = ±bθ
1
n . Then using n = 1, and taking an arbitrary spacing

of b = 1 and projecting into spherical coordinates:

x = θ sin(θ) cos(φ)

y = θ sin(θ) sin(φ)

z = θ cos(θ)

Then defining φ = θε, where ε is irrational, one can populate 3D
space with a single dynamical variable θ.
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Simplifying Pairwise Distance Calculation
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Random uniform spiral-coordinate distributions in θ (8π and 40π
for left and right plots, respectively).
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Simplifying Pairwise Distance Calculation

Here, the 3D distance formula goes as

d =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

↓

d =
√
θ2

1 + θ2
0 − 2θ1θ0 [sin(θ1) sin(θ0) cos(ε{θ1 − θ0})− cos(θ1) cos(θ0)]

Or in terms of the cosine law we can use more compact form

d =
√
θ2

0 + θ2
0 − θ1θ0 [2 cos(γ)LUT ]

The use of lookup tables here leads to one fewer operation with
spiral coordinates than Cartesian.4

4An even simpler formula arises for r = (θ1 + θ0), but introduces the constraints y1 = y0 and r1 = r0.

Ben Folsom Space Charge in Accels. 12 / 15
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Simplifying Pairwise Distance Calculation

Euclidean case:√
(x1 − x0)︸ ︷︷ ︸

=A

2 + (y1 − y0)︸ ︷︷ ︸
=B

2 + (z1 − z0)︸ ︷︷ ︸
=C

2 3 parallel subtraction

√
A2

=D
+ B2

=E
+ C 2

=F
3 parallel powerings√

D + E︸ ︷︷ ︸
=G

+F 1 serial addition

√
G + F︸ ︷︷ ︸

=H

1 serial addition

√
H 1 square root

Ben Folsom Space Charge in Accels. 13 / 15
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Simplifying Pairwise Distance Calculation

Spiral case:√
θ2

1
=A

+ θ2
0

=B

− θ1θ0︸︷︷︸
=C

[2cos(γ)]︸ ︷︷ ︸
=D

4 parallel (2 power, 1 mult., 1 lookup)

√
A + B︸ ︷︷ ︸

=E

−C · D︸ ︷︷ ︸
=F

2 parallel (1 addition, 1 mult.)

√
E − F︸ ︷︷ ︸

=G

1 serial addition

√
G 1 square root

Ben Folsom Space Charge in Accels. 14 / 15
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Conclusion

I Machines are typically designed “around” space charge, with
the weighty assumption that since average transverse β values
are low, the Coulomb potential is a sufficient approximation
for particle–particle effects. This may be inadequate for
simulating ultrarelativistic or unusually shaped
beams/bunches.

I As new accelerator designs demand high-brightness and
high-precision, relativistic accuracy via the Liénard–Wiechert
potentials may become critical.
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Supplement: An Explicit, Covariant, Symplectic Integrator
for Simulating Space Charge

Symplecticity is inherent to any system obeying Hamilton’s
equations of motion and leads to preservation of phase-space for
each spatial axis. It is a facet of beam physics–a symplectic
tracking code can predict beam stability over millions of cycles in a
ring, where a simpler energy-conservation tracking code might
gradually drift.
Explicitness, in this context, refers to an integrator which does not
require an implicit solver to determine the equations of motion for
a particle’s trajectory at each timestep.
Covariance then ensures that a simulation’s results are
frame-independent, with the additional benefit of “adaptive”
proper-time rescaling.5

5Wang, Liu, and Qin, “Lorentz Covariant Canonical Symplectic Algorithms for Dynamics of Charged Particles”.

Ben Folsom Space Charge in Accels. 16 / 15
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Beginning with Jackson’s covariant Hamiltonian6

H =
1

m

(
Pα −

q

c
Aα
)(

Pα − q

c
Aα
)
−c
√(

Pα −
q

c
Aα
)(

Pα − q

c
Aα
)

(1)
where the conjugate momentum is

Pα = mV α +
q

c
Aα (2)

where Aα is a function of four-position rα = (t,−x ,−y ,−z),
Pα = (γ + Φ,−~P), Aα = (Φ,−~A), and V α is constrained by the
light-cone condition:

VαV
α = c2 (3)

Ben Folsom Space Charge in Accels. 17 / 15



Introduction
The Liénard–Wiechert Potentials

Two-particle Force
Simplifying Pointwise Distance Calculation

this yields the following equations of motion in proper time
(dτ = dt

γ )

drα

dτ
=

∂H

∂Pα
=

1

m

(
Pα − q

c
Aα
)

dPα

dτ
= −∂H

∂rα
=

q

mc

(
Pβ −

q

c
Aβ

)
∂αAβ (4)

where m is particle mass, and the ordering of indices α and β
merits careful consideration.

Ben Folsom Space Charge in Accels. 18 / 15
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We can immediately test how these equations of motion will
discretize, thanks to Heirer’s explicit symplectic form7

Pk+1,α = Pα,k −∆τ
∂H

∂r

(
Pk+1,α, rα,k

)
=

P
+1

= Pα −∆τ
∂H

∂r

(
P
+1

α, rα
)

= Pα +
∆τq

mc

(
Pβ
+1

− q

c
Aβ

)
∂αAβ

(5)

and for position:

rk+1,α = rα,k + ∆τ
∂H

∂r

(
Pk+1,α, rα,k

)
=

r
+1

= rα + ∆τ
∂H

∂r

(
P
+1

α, rα
)

= rα +
∆τ

m

(
P
+1

α − q

c
Aα
)

(6)

Ben Folsom Space Charge in Accels. 19 / 15
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where we have condensed the notation for updated coordinates
with an underset +1, and leaving the originating coordinates
unmarked, that is

Pk+1 → P
+1

; Pk,α → Pα (7)

This clarifies the upcoming linear algebra needed to decouple Pβ
from the right-hand side terms.
We can then attempt to isolate P

+1
terms for a fully explicit

algorithm. Such a potential reduces to

P
+1

x = Px +
∆τ

mc

(
−P

+1

z +
q

c
Az

)
∂Az

∂x
(8)

Ben Folsom Space Charge in Accels. 20 / 15
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where here and moving forward we use the notation

∂α ≡ ∂

∂xα
=

(
∂

∂x0
,−~∇

)
∂α ≡

∂

∂xα
=

(
∂

∂x0
, ~∇
)

Aα = (A0,Aα) ; Aα = (A0,−~A)

∴ ∂αAα = ∂αA
α =

∂A0

∂x0
+ ~∇ · ~A = 0 (in the Lorenz gauge)

∂αAα = ∂αAα =
∂A0

∂x0
− ~∇ · ~A (9)

Ben Folsom Space Charge in Accels. 21 / 15
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along with the Minkowski metric

g00 = 1 ; g11 = g22 = g33 = −1

gαβ = gαβ ; gαγg
γβ = δβα ; δβαδ

α
β = δαα = 4

xα = gαβx
β

; xα = gαβxβ ; xα = xβδαβ (10)

Since the r
+1

α expression is explicit as-is, we can focus solely on the

momentum, first rearranging terms and extracting gαβ’s

P
+1

α −
(

∆τq

mc

)
Pβ
+1

∂αAβ = Pα −
(

∆τq2

mc2

)
Aβ ∂

αAβ

gβαPβ
+1

−
(

∆τq

mc

)
Pβ
+1

∂αAβ = gβαPβ −
(

∆τq2

mc2

)
Aβ ∂

αAβ (11)
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we then introduce a dummy index λ and left-hand multiply both
sides by gλα/gλα, which are identical and which can commute past
β-only factors. This yields

δβλPβ
+1

−
(

∆τq

mc

)
∂λA

β = δβλPβ −
(

∆τq2

mc2

)
Aβ ∂γA

β (12)

where δβλ is analogous to the identity matrix here, and thus δβλPβ.
We then have

Pβ
+1

(
δβλ −

∆τq

mc
∂λAβ

)
= Pβδ

β
λ −

(
∆τq2

mc2

)
Aβ ∂λA

β (13)
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which, for Pβδ
β
λ , and λ = x still reduces to Eqn. 8. We then

multiply both sides bu (δβλ + ∆τq
mc ∂

λAβ), leaving

Pβ
+1

(
4− ∆τ2q2

m2c2
∂λA

β · ∂λAβ
)

=

(
Pβδ

β
λ −

∆τq2

mc2
Aβ ∂λA

β

)(
δλβ +

∆τq

mc
∂λAβ

)
(14)

where ∂λA
β · ∂λAβ contracts to a scalar. We can now isolate Pβ

+1

by division, and expand the right-hand side terms:

Pβ
+1

=
4Pβ + ∆τq

mc Pβδ
β
λ ∂

λAβ − ∆τq2

mc2 Aβ ∂λA
βδλβ −

∆τ2q3

m2c2 Aβ (∂λA
β)2

4− ∆τ2q2

m2c2 (∂λAβ)2

(15)
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we can now resolve the Kronecker deltas and finally left-hand
multiply by gλβ to return P

+1
to contrariant form

Pλ
+1

=
4Pλ + ∆τq

mc Pβ ∂λAβ − ∆τq2

mc2 Aλ ∂λA
λ − ∆τ2q3

m2c2 Aλ (∂λA
β)2

4− ∆τ2q2

m2c2 (∂λAβ)2

(16)
For Aα = Az(x , y) (i.e. the ideal form of multipole magnet’s
potential) the x- and z-components of momentum are

P
+1

x =
4Px − ∆τq

mc Pz ∂Az

∂x

4− ∆τ2q2

m2c2 (−∂Az

∂x −
∂Az

∂y )2
; P

+1

z = Pz (17)

6Jackson, Classical Electrodynamics, p585.
7Hairer, Lubich, and Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary

Differential Equations; 2nd ed. p3.
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Equation (15) and the already explicit r
+1

α four-position from

Eq. (5) now fulfill the ideal criteria: long-term stability
(symplecticity by Hairer’s method), frame independence (Lorentz
invariance via covariant formalism), and efficiency/precision (via an
explicit integrator).
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