Magnetic Monopoles

IceCube Searches for Magnetic Monopoles - Covering the Full β Spectrum (Almost)

A. Burgman

.

Division of High Energy Physics Uppsala University

2018 - 10 - 16

UNIVERSITET

Magnetic Monopoles

Magnetic Monopole Basics

Magnetic Charge

 \triangleright Free north or south pole

Quantum Formulation

 $\triangleright \text{ Dirac, 1931}$ $\triangleright g_n = n \frac{1}{2\alpha} e$ $\triangleright g_1 = \sim 68.5 e$ $\triangleright \text{ Dirac charge, } g_D$

Magnetic Monopoles

A. Burgman

Monopoles in IceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Back

Magnetic Monopole Mass

 $\triangleright m_{MM} \in [10^4; 10^{17}] \, \text{GeV}$

Lower m_{MM} \triangleright Collider seaches Higher m_{MM} \triangleright Primordial flux seaches

Magnetic Monopole Energy

 $ightarrow E_{kin} \lesssim 10^{15} \, \mathrm{GeV}$

Primordial population accelerated by extragalactic magnetic fields

IceCube Basics

Detector

5160 DOMs (*Digital Optical Modules*) seeing light produced by in-ice particles

Event types

- \triangleright Cascades $(v_{e,\tau})$
- \triangleright Tracks (μ, ν_{μ})
 - \triangleright Starting/stopping
 - ▷ Through-going

Magnetic Monopoles

A. Burgman

Monopoles in IceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Monopole light yield

Non-relativistic

 $\beta \lesssim 0.01$

 Particle cascades from induced proton decay in medium

Magnetic Monopoles

A. Burgman

Monopoles in IceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Monopole light yield

Low relativistic

 $0.01 \lesssim \beta \lesssim 0.5$

Luminescence
 light from excitation
 and subsequent
 deexcitation of
 medium

Magnetic Monopoles

A. Burgman

Monopoles in IceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Monopole light yield

$\frac{\text{Mildly relativistic}}{0.5 \lesssim \beta \lesssim 0.75}$

Indirect
 Cherenkov light
 from ionization of
 medium

Magnetic Monopoles

A. Burgman

Monopoles in IceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Relativistic

light

 $0.75 \lesssim \beta \lesssim 0.99995$

Direct Cherenkov

Magnetic Monopoles

A. Burgman

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Monopole light yield

Ultra-relativistic $0.99995 \leq \beta$ $100 \leq \gamma$ \triangleright Stochastic nuclearinteractions, directCherenkov light

Magnetic Monopoles

A. Burgman

Monopoles in IceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

 \triangleleft ... sans current lcecube \triangleright

Magnetic Monopoles

Analyzer β Range Light Production Event Characteristics E. Jacobi 10⁻³ – 10⁻² Induced proton decay Extremely slow, dim track

Analysis Steps

- Slow track hypothesis ⇒ discern long events
- 2. Apply cleaning
 - Hits far from track
 - Fitted fast tracks
- Apply BDT to remove remaining background events

Magnetic Monopoles

A. Burgman

Monopoles in ceCube

Non-Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Backups

Main Removing non-related hits from event Challenge

Analyzer β Range Light Production Event Characteristics E. Jacobi 10⁻³ – 10⁻² Induced proton decay Extremely slow, dim track

Analysis Steps

- Slow track hypothesis ⇒ discern long events
- 2. Apply cleaning
 - Hits far from track
 - Fitted fast tracks
- Apply BDT to remove remaining background events

Magnetic Monopoles

A. Burgman

Monopoles in IceCube Non-Relativistic Low Relativistic Mildly Relativistic Relativistic

Concluding Remarks

Backups

Main Removing non-related hits from event llenge \rightarrow Coincident muon tracks

Challenge

Analyzer β Range Light Production Event Characteristics E. Jacobi 10⁻³ – 10⁻² Induced proton decay Extremely slow, dim track

Analysis Steps

- Slow track hypothesis
 ⇒ discern long events
- 2. Apply cleaning
 - Hits far from track
 - Fitted fast tracks
- Apply BDT to remove remaining background events

MainRemoving non-related hits from eventChallenge \rightarrow Coincident muon tracks \rightarrow PMT noise etc.

Magnetic Monopoles

A. Burgman

Monopoles in IceCube Non-Relativistic

.ow Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Sensitivity

Sensitivity on monopole flux over proton decay catalysis cross section, σ_{cat}

Magnetic Monopoles

A. Burgman

Monopoles in ceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Magnetic Monopoles

Magnetic Monopoles

A. Burgman

8/21

Low Relativistic Monopoles

AnalyzerF. Lauber β Range0.1 - 0.5Light ProductionLuminescence lightEvent CharacteristicsSlow, smooth, fairly dim track

Analysis Steps

- 1. Quality cuts (central track, through-going)
- 2. Neural network to quantify the smoothness of the track
- 3. BDT to remove final remaining background

- line along track
- plane orthogonal to track

Magnetic Monopoles

A. Burgman

Monopoles in ceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Low Relativistic Monopoles

Toy BDT score distributions

Good separation between SG and BG

Current BG reduction: 5 OoM Required BG reduction: another 3 OoM

Preliminary Results Timeline: ~ summer 2019

Magnetic Monopoles

A. Burgman

Monopoles in ceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Magnetic Monopoles

A. Burgman

Non-Relativistic Low Relativistic Mildly Relativisti Relativistic

Concluding Remarks

Magnetic Monopoles

A. Burgman

Non-Relativistic Low Relativistic Mildly Relativisti Relativistic

Concluding Remarks

Mildly Relativistic Monopoles

Analyzer

β Range Light Production Event Characteristics

A. Pollmann 0.5 – 0.75 Indirect Cherenkov light (beta-electrons) Moderately fast, bright, smooth track

Analysis Steps

- Loose quality cuts (number of hit strings, DOMs)
- 2. Loose BG reduction cuts (track length, hit distribution, direction)
- 3. BDT to remove final remaining background

Magnetic Monopoles

A. Burgman

Nonopoles in ceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Mildly Relativistic Monopoles

 $d_{Sep} - a \ powerful \ selection \ variable$ Gives distance from center of first quartile of hits to center of last quartile of hits \rightarrow shows the type of track

Magnetic Monopoles

A. Burgman

Monopoles ir ceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Mildly Relativistic Monopoles

BDT score at final level

Good separation between SG and BG at final level

 \rightarrow cut at BDT score 0.47

Three events remaining in data at final level

 \rightarrow expected and background-like

Magnetic Monopoles

A. Burgman

Monopoles in ceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Magnetic Monopoles

Magnetic Monopoles

Analyzer β Range Light Production Event Characteristics

A. Burgman 0.75 – 0.995 Direct Cherenkov light Extremely bright, smooth track

Analysis Steps

- Using cuts from EHE analysis (a search for high energy neutrinos) ⇒ sample with...
 - Bright events
 - Low atm. event rate
- 2. BDT to remove remaining neutrino events (EHE analysis signal events)

Magnetic Monopoles

A. Burgman

Monopoles in ceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

d_{COG-offset} — a powerful selection variable Gives distance from center-of-gravity of hits to center of track → shows large concentrations of light

Magnetic Monopoles

A. Burgman

Monopoles in ceCube Non-Relativistic Low Relativistic Mildly Relativistic

Relativistic

Concluding Remarks

Projected BDT score at final level

Possible BG reduction of 2 OoM while keeping $\sim 90\,\%$ of signal

 \rightarrow cut at BDT score 0.087

Preliminary Results Timeline: ~ summer 2019

Magnetic Monopoles

\lhd Projected sensitivity (to be updated!) \triangleright

Magnetic Monopoles

\lhd Projected sensitivity (to be updated!) \triangleright

Magnetic Monopoles A. Burgman

Relativistic

19/21

\lhd (Expected) world leading IceCube-results over most of β -range \triangleright

Magnetic Monopoles

A. Burgman

Monopoles in IceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

 \lhd (Expected) world leading IceCube-results over most of β -range \triangleright

Magnetic Monopoles A. Burgman

 \lhd (Expected) world leading IceCube-results over most of β -range \triangleright

Magnetic Monopoles

 \lhd (Expected) world leading IceCube-results over most of β -range \triangleright

Magnetic Monopoles

A. Burgman

20/21

Magnetic Monopoles

A. Burgman

Monopoles in ceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Backups

Thank you

Magnetic Monopoles

A. Burgman

Monopoles in ceCube

Non-Relativistic

Low Relativistic

Mildly Relativistic

Relativistic

Concluding Remarks

Backups

Backup I – Magnetic Monopoles in Ice

Magnetic Monopoles A. Burgman

Backup II – Monopole Mass Predictions

Magnetic Monopoles

		IceCube
		Non-Relativistic
		Low Relativistic
Model	Mass /GeV	Mildly Relativistic
$\Lambda_{MM} \sim \Lambda_{EW}$	4.0×10^{4}	Relativistic
SU (15)	10 ⁸	Concluding
SO(10)	$10^{10} - 10^{16}$	Remarks
SU (5)	10 ¹⁷	
	-	Backups

Backup III

Magnetic Monopoles

	Magnetic	Coherence	Kinetic Energy	
	Field	Length	per passing	Monopoles in IceCube
Accelerator	/µG	/Mpc	/GeV	Non-Relativist
Normal Galaxies	3 - 10	10^{-2}	$(0.3 - 1) \times 10^{12}$	Low Relativisti
Starburst Galaxies	10 - 50	10^{-3}	$(1.7 - 8) \times 10^{11}$	Mildle Deletist
AGN jets	~ 100	$10^{-4} - 10^{-2}$	$1.7 \times (10^{11} - 10^{13})$	
Galaxy Clusters	5 - 30	$10^{-4} - 1$	3×10^{9} –	Relativistic
,			5×10^{14}	Concluding Remarks
Extragalactic Sheets	0.1 – 1	1 - 30	1.7×10^{13} –	
Ū.			5×10^{14}	Backups

- ▷ A monopole interacting only with one accelerator type:
 - Broad energy distribution centered on $E_{kin} \times \sqrt{n}$
 - *n* is the expected number of passings
- A primordial monopole arriving at Earth today
 - Passed ~ 100 extragalactic sheet domains
 - Energy distribution centered at $\sim 10^{15}$ GeV

Backup IV – EHE Analysis Cuts

Cuts from the EHE Analysis

Level 2 — Analysis Cut:	Cuts on n_{pe} , n_{ch} and the χ^2_{red} of the EHE ILF to get extremely bright events	Non-Rela
Level 3 – Atmospheric v_e Cut:	Cut on $\log(n_{pe})$ depending on χ^2_{red} to demand more light for more cascade like events than track like events	Mildly R Relativis Conclud Remarks
Level 4 — <i>Atmospheric</i> µ <i>Cut:</i>	Cut on $\log(n_{pe})$ depending on zenith direction to demand more light for downgoing events	Backups
Level 5 — <i>IceTop Veto:</i>	Remove events with one or more IceTop hits within a certain time window	

Magnetic Monopoles