$H^{\rm +}$ searches in ATLAS

Max Isacson On behalf of the ATLAS collaboration

October 16 Partikeldagarna, Lund, 2018

The need for physics Beyond the Standard Model

- Dark matter/energy
- Matter-anti-matter asymmetry
- Quantum theory of gravity
- Neutrino oscillations
- Anomalous muon magnetic dipole moment
- Hierarchy problem
- etc...

Many models addressing these points add one or several additional Higgs doublets.

- This produces a pair of charged scalar bosons H^{\pm}
- As well a neutral scalar pair (h, H) and a neutral pseudo-scalar A
- Some models also produces doubly charged bosons H^{±±}

Here we'll only consider the minimal Type-II Two Higgs Doublet Model (2HDM)

- H⁺ production/decay depends on
 - tan β (ratio of vevs)
 - α (CP-even mixing angle)
 - $\blacktriangleright m_{H^+}$
- Fix α in the alignment limit $\cos(\beta \alpha) = 0$
- $m_{H^+} < m_t + m_b : t \to bH^+,$ $H^+ \to \tau v$
- $\begin{array}{l} \blacktriangleright \ m_{H^+} > m_t + m_b \colon gg \to tbH^+, \\ H^+ \to tb \end{array}$

$H^+ \rightarrow \tau \nu$

arxiv:1807.07915 JHEP 09 (2018) 139

- $36.1 \,\mathrm{fb}^{-1}$ at $\sqrt{s} = 13 \,\mathrm{TeV}$ from 2015+2016
- Mass range: 90-2000 GeV (including intermediate mass)
- $H^+ \rightarrow \tau \nu$ where $\tau \rightarrow \tau_{had-vis} + \nu$
- Final states based on the *W* decay mode:

$$\tau_{\text{had}} + \text{jets} (W \to q\bar{q}')$$

$$\tau_{\text{had}} + \text{lepton} (W \to \ell\nu, \ell = e, \mu)$$

 τ + jets

- ▶ $\geq 1\tau_{had-vis}$ and no leptons
- ▶ \geq 3 jets (\geq 1*b*-tag)
- \blacktriangleright $E_{\rm T}^{\rm miss} > 150 \, {\rm GeV}$
- $m_{\rm T} > 50 \, {\rm GeV}$

where

 $m_{\rm T} = \sqrt{2p_{\rm T}^{\tau} E_{\rm T}^{\rm miss} \left(1 - \cos \Delta \phi_{\tau,\rm miss}\right)}.$

 τ + lepton

- = 1 lepton (e/μ , trigger matched)
- = 1 $\tau_{had-vis}$ with opposite sign
- ▶ \geq 1 *b*-tagged jet
- $\blacktriangleright E_{\rm T}^{\rm miss} > 50 \, {\rm GeV}$

One additional control region using the $\tau{+}{\rm lepton}$ selection but with an $e\mu$ pair instead of $\ell\tau$

Multivariate discriminant

- BDTs trained in 5 m_{H⁺} bins
- Separate training for jet and lepton final states
- For $m_{H^+} < 500$ GeV the polarization measure Υ is included for 1-prong $\tau_{\rm had-vis}$ candidates

Binned maximum likelihood fit to extract the signal strength $\mu = \sigma(pp \rightarrow tbH^+) \times \mathcal{B}(H^+ \rightarrow \tau \nu)$

- Constrain systematic uncertainties with nuisance parameters θ (θ ~ Normal or Log-Normal)
- The full binned BDT distributions are used in the three signal regions
- In the tt
 -enriched control region only a single bin is used

$$L(\mu, \theta) = \prod_{i} \prod_{j} \operatorname{Po}(x_{ij}|\mu, \theta) \prod_{k} p(\tilde{\theta}_{k}|\theta_{k})$$

- No significant excess is observed
- Set model independent 95% CL upper limits on
 - $\sigma(pp \to tbH^+) \times \mathcal{B}(H^+ \to \tau v)$
 - $\mathcal{B}(t \to bH^+) \times \mathcal{B}(H^+ \to \tau \nu)$ for low masses
- Limits on tan β vs m_{H⁺} in the hMSSM scenario

$H^+ \rightarrow tb$

arxiv:1808.03599 Submitted to JHEP

- $36.1 \,\mathrm{fb}^{-1}$ at $\sqrt{s} = 13 \,\mathrm{TeV}$ from 2015+2016
- 18 mass points in the range 200–2000 GeV
- Final stated based on W decay modes
 - Single lepton (ℓ+jets), where ℓ can come from either the W from the associated t, or the t from the H⁺ → tb decay.
 - Dilepton (*ll*), where both Ws in the event decay leptonically

- At least one lepton (trigger matched)
- ▶ \geq 5 jets with \geq 2*b*-tags

Dilepton

- At least one lepton (trigger matched)
- One additional lepton with opposite sign
- ▶ \geq 3 jets with \geq 2*b*-tags
- Same flavour channel requires m_{ℓℓ} > 15 GeV and ∉ [83, 99] GeV

 $t\bar{t}+ \geq 1b$ background modelling

- Largest irreducible background
- ▶ Similar kinematics to the signal for low *m*_{*H*⁺}
- Divided into subcategories
 - $t\bar{t} + bb$: Exactly two jets matched to *b*-hadrons
 - $t\bar{t} + b$: Exactly one jet matched to a *b*-hadron
 - ▶ $t\bar{t} + B$: Exactly one jet matched to $\geq 2 b$ -hadrons
 - $t\bar{t} + \ge 3b$: Other configurations
 - ▶ $t\bar{t} + b$ (MPI/FSR): Jets matched to *b*-hadrons from multi-parton interactions or final-state gluon radiation

where the matching is done at particle level

- Reweight the relative normalizations to NLO prediction from SHERPA 2.1.1 + OPENLOOPS
- Sequential reweighting on the kinematical distributions based on subcategory

Remaining $t\bar{t}$ events classified as either $t\bar{t} + c$ or $t\bar{t} + light$.

Multivariate discriminant

- BDTs trained separately for each mass point in each signal region
- ▶ In l+jets the 5*j*3*b* and 5*j* ≥ 4*b* are combined to increase statistics
- *ℓ*+jets train against all backgrounds
- Dilepton train against only ttbar
- For $m_{H^+} \leq 300 \text{ GeV}$ a kinematic discriminant *D* is used as an additional input

where D, defined as $D = \frac{P_{H^+}(x)}{P_{H^+}(x)+P_{t\bar{t}}(x)}$, is the probability of an event x being compatible with $H^+ \rightarrow tb$ or $t\bar{t}$.

Binned maximum likelihood fit to extract the signal strength

 $\mu = \sigma(pp \to tbH^+) \times \mathcal{B}(H^+ \to tb)$

- Constrain systematic uncertainties with nuisance parameters θ (θ ~ Normal or Log-Normal)
- The full binned BDT distributions are used in the signal regions
- Single bin for each control region

- No significant excess is observed
- ► Model independent 95% CL upper limits on $\sigma(pp \rightarrow tbH^+) \times \mathcal{B}(H^+ \rightarrow tb)$
- Upper limits on $\tan \beta$ vs m_{H^+} in the $m_{\rm h}^{\rm mod-}$ and hMSSM scenarios

m_{u+} [GeV]

Projecting the $H^+ \rightarrow \tau \nu$ limits together with the $H^+ \rightarrow tb$ limits shows the total exclusion in the m_{H^+} – tan β plane using this dataset.

Conclusions

- No significant excess has been seen in either channel
- Model independent upper limits on $\sigma \times \mathcal{B}$ has been set
- Exclusion limits in the m_{H^+} tan β plane has been set for the $m_h^{\text{mod}-}$ and hMSSM scenarios

Backup

https://cds.cern.ch/record/1095924

$H^+ \rightarrow \tau \nu$ material

Turn on curves for the $E_{\rm T}^{\rm miss}$ trigger at 70, 90, and 110 GeV.

Fake factors

$$FF = \frac{N_{\tau_{\text{had-vis}}}^{\text{CR}}}{N_{\text{anti-}\tau_{\text{had-vis}}}^{\text{CR}}}$$

Background modelling I

Background modelling II

BDT input variables

BDT input variable	$\tau_{\rm had-vis}$ +jets	$\tau_{\rm had-vis}$ +lepton
$E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	\checkmark
$p_{\mathrm{T}}^{ au}$	\checkmark	\checkmark
$p_{\mathrm{T}}^{b ext{-jet}}$	\checkmark	\checkmark
p_{T}^ℓ		\checkmark
$\Delta \phi_{ au,\mathrm{miss}}$	\checkmark	\checkmark
$\Delta \phi_{b ext{-jet, miss}}$	\checkmark	\checkmark
$\Delta \phi_{\ell,\mathrm{miss}}$		\checkmark
$\Delta R_{\tau,\ell}$		\checkmark
$\Delta R_{b-\mathrm{jet},\ell}$	/	\checkmark
$\Delta R_{b ext{-jet}, au}$	V	(
1	✓	✓

Expected event yields

arxiv:1807.07915							
Sample	Event yields $\tau_{had-vis}$ +jets						
True τ_{had}							
$t\bar{t}$	$6900 \pm 60 \pm 1800$						
Single-top-quark	$750 \pm 20 \pm 100$						
$W \rightarrow \tau \nu$	$1050 \pm 30 \pm 180$						
$Z \rightarrow \tau \tau$	$84 \pm 42 \pm 28$						
Diboson (WW, WZ, ZZ)	$63.2 \pm 4.6 \pm 7.2$						
Misidentified $e, \mu \rightarrow \tau_{had-vis}$	$265 \pm 12 \pm 35$						
Misidentified jet $\rightarrow \tau_{had-vis}$	$2370 \pm 20 \pm 260$						
All backgrounds	$11500 \pm 80 \pm 1800$						
H^+ (170 GeV), hMSSM tan $\beta = 40$	$1400 \pm 10 \pm 170$						
H^+ (1000 GeV), hMSSM $\tan \beta = 40$	$10.33 \pm 0.06 \pm 0.78$						
Data	11021						

Sample	Event yields $\tau_{had-vis}$ +electron	Event yields $\tau_{had-vis}$ +muon
True τ_{had}		
$t\bar{t}$	$16000 \pm 80 \pm 2500$	$14600 \pm 80 \pm 2400$
Single-top-quark	$1260 \pm 20 \pm 110$	$1260 \pm 20 \pm 110$
$Z \rightarrow \tau \tau$	$433 \pm 27 \pm 80$	$352 \pm 48 \pm 43$
Diboson (WW, WZ, ZZ)	$39.3 \pm 2.1 \pm 4.5$	$32.3 \pm 1.7 \pm 3.6$
Misidentified $e, \mu \rightarrow \tau_{had-vis}$	$626 \pm 27 \pm 59$	$454 \pm 16 \pm 27$
Misidentified jet $\rightarrow \tau_{had-vis}$	$5640 \pm 40 \pm 450$	$5460 \pm 40 \pm 410$
All backgrounds	$24000 \pm 100 \pm 2600$	$22200 \pm 100 \pm 2500$
H^+ (170 GeV), hMSSM tan $\beta = 40$	$850 \pm 12 \pm 65$	$852 \pm 11 \pm 66$
H^+ (1000 GeV), hMSSM tan $\beta = 40$	$0.82 \pm 0.02 \pm 0.07$	$1.05 \pm 0.02 \pm 0.09$
Data	22645	21419

Post-fit plots I

Post-fit plots II

Post-fit plots III

Systematic uncertanties

Source of systematic	Impact on the expected limit (stat. only) in %			
uncertainty	$m_{H^+} = 170 \ GeV$	$m_{H^+} = 1000 \ GeV$		
Experimental				
luminosity	2.9	0.2		
trigger	1.3	< 0.1		
$\tau_{\rm had-vis}$	14.6	0.3		
jet	16.9	0.2		
electron	10.1	0.1		
muon	1.1	< 0.1		
$E_{\mathrm{T}}^{\mathrm{miss}}$	9.9	< 0.1		
Fake-factor method	20.3	2.7		
Υ modelling	0.8	_		
Signal and background models				
$t\bar{t}$ modelling	6.3	0.1		
W/Z+jets modelling	1.1	< 0.1		
cross-sections $(W/Z/VV/t)$	9.6	0.4		
H^+ signal modelling	2.5	6.4		
All	52.1	13.8		

$H^+ \rightarrow tb$ material

Max Isacson

Max Isacson

H^+ searches in ATLAS

36 / 44

Max Isacson

H^+ searches in ATLAS

Physics process	Generator	Parton shower generator	Cross-section normalisation	PDF set	Tune
tbH^+	MG5_AMC	Pythia 8.186	-	NNPDF2.3NLO	A14
$t\bar{t} + jets$	Powheg-Box v2	Pythia 8.210	NNLO+NNLL	NNPDF3.0NLO	A14
$t\bar{t}b\bar{b}$	Sherpa 2.1.1	Sherpa 2.1.1	NLO for $t\bar{t}b\bar{b}$	CT10F4	Sherpa default
$t\bar{t}V$	MG5_AMC	Pythia 8.210	NLO	NNPDF3.0	A14
$t\bar{t}H$	MG5_AMC	Pythia 8.210	NLO	NNPDF3.0NLO	A14
Single top, Wt	Powheg-Box v1	Pythia 6.428	aNNLO	CT10	Perugia 2012
Single top, t -channel	Powheg-Box v1	Pythia 6.428	aNNLO	CT10F4	Perugia 2012
W+jets	Sherpa 2.2.1	Sherpa 2.2.1	NNLO	NNPDF3.0NNLO	Sherpa default
Z+jets	Sherpa 2.2.1	Sherpa 2.2.1	NNLO	NNPDF3.0NNLO	Sherpa default

Systematic uncertainty	Type	Number of components
Luminosity	Ν	1
Pile-up	NS	1
Electron reconstruction	NS	6
Muon reconstruction	NS	13
Jet and $E_{\rm T}^{\rm miss}$ reconstruction	NS	28
Flavour tagging, 70% efficiency calibration (*)	NS	27
Flavour tagging, step-wise efficiency calibration (*)	NS	126
Signal modelling	NS	31
Background modelling, $t\bar{t}$ + jets	NS	29
Background modelling, other top	NS	25
Background modelling, non-top (ℓ +jets final state)	Ν	13
Background modelling, non-top ($\ell\ell$ final state)	Ν	4

		arxiv	:1808.03599			
Process	CR 5j2b	SR 5j3b	SR 5j≥4b	$CR \ge 6j2b$	$SR \ge 6j3b$	$SR \ge 6j \ge 4b$
$t\bar{t} + \ge 1b$	$15\ 300 \pm 2300$	7400 ± 1000	750 ± 110	17100 ± 2800	$11\ 100\pm 1500$	2410 ± 260
$t\bar{t} + \ge 1c$	$47\ 000 \pm 12\ 000$	6400 ± 1700	260 ± 80	$55\ 000\pm 11\ 000$	9400 ± 2000	450 ± 180
$t\bar{t} + light$	$226\ 000 \pm 11\ 000$	$12\ 200 \pm 1100$	89 ± 35	$132\ 000\pm 10\ 000$	8500 ± 1100	260 ± 120
Non-prompt leptons	$15\ 000\pm 6000$	600 ± 500	11 ± 8	$13\ 000\pm 6000$	700 ± 400	4 ± 5
$t\bar{t}W$	340 ± 50	29 ± 4	0.66 ± 0.22	540 ± 80	72 ± 11	5.0 ± 1.2
$t\bar{t}Z$	390 ± 50	78 ± 10	12.2 ± 2.2	720 ± 90	183 ± 23	50 ± 7
Single top Wt	8900 ± 2400	690 ± 210	23 ± 13	5400 ± 1800	640 ± 260	53 ± 31
Other top	328 ± 27	28.2 ± 2.6	3.1 ± 0.6	183 ± 20	46 ± 11	14 ± 5
Diboson	410 ± 210	29 ± 15	2.0 ± 2.1	340 ± 170	37 ± 19	4.3 ± 2.5
W + jets	9000 ± 4000	540 ± 240	16 ± 9	5200 ± 2100	470 ± 200	27 ± 12
Z + jets	2100 ± 600	104 ± 35	4.9 ± 1.8	1300 ± 400	130 ± 40	11 ± 4
$t\bar{t}H$	252 ± 24	127 ± 13	30 ± 4	520 ± 50	315 ± 32	117 ± 16
tH	19.5 ± 2.4	10.6 ± 1.3	2.21 ± 0.32	27.2 ± 3.5	15.7 ± 2.0	5.0 ± 0.7
Total	$328\ 000\pm7000$	$28 400 \pm 900$	1220 ± 60	$233\ 000\pm 6000$	$31\ 800\pm 800$	3410 ± 150
Data	334 813	29 322	1210	234 053	32 151	3459
H^+ (200 GeV)	470 ± 50	220 ± 23	25.3 ± 3.3	340 ± 50	235 ± 34	60 ± 9
H^{+} (800 GeV)	630 ± 90	390 ± 70	56 ± 12	1230 ± 190	1020 ± 170	350 ± 70

Post-fit event yields

		$u_1 \times v_2 \cdot v_0 u_0 \cdot v_1$	177		
Process	CR 3j2b	SR/CR 3j3b	$CR \ge 4j2b$	$SR \ge 4j3b$	${\rm SR} \ge \!\! 4j \! \ge \!\! 4b$
$t\bar{t} + \ge 1b$	2330 ± 330	940 ± 130	3300 ± 500	2050 ± 280	322 ± 35
$t\bar{t} + \ge 1c$	6100 ± 1300	520 ± 140	9900 ± 2000	1310 ± 290	30 ± 14
$t\bar{t} + light$	$50\ 700 \pm 2300$	260 ± 70	32500 ± 2100	420 ± 120	4 ± 5
Non-prompt leptons	420 ± 110	6.7 ± 2.4	620 ± 160	48 ± 13	2.2 ± 0.8
$t\bar{t}W$	48 ± 7	1.48 ± 0.17	129 ± 7	9.8 ± 1.1	0.55 ± 0.21
$t\bar{t}Z$	43 ± 5	5.8 ± 1.1	174 ± 10	32.9 ± 2.0	7.0 ± 1.3
Single top Wt	1700 ± 500	40 ± 12	1110 ± 330	63 ± 26	3.9 ± 2.0
Other top	3.9 ± 0.5	0.12 ± 0.05	21.8 ± 3.5	5.8 ± 2.2	2.0 ± 0.9
Diboson	36 ± 4	1.2 ± 0.4	46 ± 6	3.1 ± 0.9	0.48 ± 0.28
Z + jets	1600 ± 500	42 ± 16	1300 ± 400	82 ± 29	5.3 ± 2.0
$t\bar{t}H$	26.2 ± 1.3	8.5 ± 0.5	116 ± 6	52.2 ± 3.5	16.0 ± 1.9
tH	1.95 ± 0.27	0.42 ± 0.10	5.7 ± 0.7	2.14 ± 0.32	0.48 ± 0.09
Total	$62 800 \pm 2800$	1810 ± 110	$49\ 300 \pm 2300$	4060 ± 200	390 ± 28
Data	62 399	1774	48 356	4047	376
H^{+} (200 GeV)	92 ± 12	27 ± 4	72 ± 12	49 ± 8	9.0 ± 1.6
H^+ (800 GeV)	70 ± 12	32 ± 7	212 ± 33	157 ± 27	44 ± 9

arvin 1808 02500

arxiv	1808.03599	
Uncertainty Source	$\Delta \mu(H_{200}^{+})$ [pb]	$\Delta \mu(H_{800}^{+}) [\text{pb}]$
Jet flavour tagging	0.70	0.050
$t\bar{t} + \geq 1b \mod$	0.65	0.008
Jet energy scale and resolution	0.44	0.031
$t\bar{t}$ +light modelling	0.44	0.019
MC statistics	0.37	0.044
$t\bar{t} + \geq 1c \text{ modelling}$	0.36	0.032
Other background modelling	0.36	0.039
Luminosity	0.24	0.010
Jet-vertex assoc., pile-up modelling	0.10	0.006
Lepton, $E_{\rm T}^{\rm miss}$, ID, isol., trigger	0.08	0.003
H^+ modelling	0.03	0.006
Total systematic uncertainty	1.4	0.11
$t\bar{t} + \geq 1b$ normalisation	0.61	0.022
$t\bar{t} + \geq 1c$ normalisation	0.28	0.012
Total statistical uncertainty	0.69	0.050
Total uncertainty	1.5	0.12

ℓ±iets channel	ul XIV-1000.03333			
e-(4-)	Loading lot transverse momentum			
D ABmin	Leading jet transverse momentum			
m(b-pair)	Invariant mass of pair of b-tagged jets with smallest ΔR Transverse momentum of fifth let			
H ₂	Second Fox-Wolfram moment [130] calculated using all jets and leptons			
$\Delta \hat{R}^{avg}(b-pair)$	Average ΔR between all b-tagged jet pairs in the event			
$\Delta R(\ell, b-pair \Delta R^{min})$	ΔR between the lepton and the b-tagged jet pair with smallest ΔR			
$m(u-pair^{\Delta R})$	Invariant mass of the non-b-tagged jet-pair with minimum ΔR			
H ^{jets} _T	Scalar sum of all jets transverse momenta			
m(b-pair ^p T)	Invariant mass of the b-tagged jet pair with maximum transverse momentum			
mmax (b-pair)	Largest invariant mass of any two b-tagged jets			
m ^{max} (j-triplet)	Largest invariant mass of any three jets			
D	Kinematic discriminant based on mass templates (for $m_{H^+} \leq 300 \text{ GeV}$)			
$\ell\ell$ channel, $m \leq 600 GeV$		3j3b	$\geq 4j3b$	$\geq \! 4j \! \geq \! 4b$
$m((j, b)^{p_{T}})$	Inv. mass of the jet and b-tagged jet with largest p_T	×.		
$\Delta E(j_3, \ell_2)$	Energy difference between the third jet and the subleading lepton	×,		
$\Delta m(i_1 + i_2 + i_3 + i_3 + f_3 + Fmiss)$	Energy of third jet law mass difference between $i_1 + i_2$ and $i_2 + i_3 + i_4 + pmiss$	1		
$\Delta P(4 + \ell + \ell + P^{miss})$	Angular difference between $j_1 + j_2$ and $j_1 + j_3 + t_2 + E_T^{miss}$	*		
$p_{T}(b_1)$	pm of leading b-tagged jet	~		
$p_{T}((\ell, b) \Delta \eta^{max})$	pr of the pair of lepton and b-tagged jet with largest Δn	1		
$m((\ell, h)\Delta\phi^{\min})$	Inv. mass of the pair of lepton and h tagged int with smallest A &		/	
$\Delta E(h_1, \ell_2 + E^{miss})$	Energy difference between the leading h-tagged jet with smallest $\Delta \phi$		2	
$\Delta m(j_2 + j_2, j_1 + \ell_1 + \ell_2)$	Inv. mass difference between $j_2 + j_2$ and $j_1 + \ell_1 + \ell_2$		2	
$\Delta m(\ell_1 + j_3 + E_T^{miss}, j_1 + j_2 + \ell_2)$	Inv. mass difference between $\ell_1 + j_3 + E_T^{miss}$ and $j_1 + j_2 + \ell_2$		1	
$\Delta p_T(j_1, j_3)$	pT difference between leading and third jet		~	~
m ^{min} (b-pair)	Smallest invariant mass of any b-tagged jet pair		~	~
$m^{\min}(\ell, b)$	Smallest invariant mass of any pair of lepton and b-tagged jet		~	~
$p_T(b_2 + \ell_1 + \ell_2 + E_T^{miss})$	$p_T \text{ of } b_2 + \ell_1 + \ell_2 + E_T^{miss}$			~
$\Delta R(\ell_2, j_2 + j_3 + \ell_1 + E_T^{miss})$	Angular difference between ℓ_2 and $j_2 + j_3 + \ell_1 + E_T^{miss}$			~
H ^{all} _T	Scalar sum of all jets and leptons transverse energy			~
$\ell\ell$ channel, $m > 600 GeV$		3j3b	$\geq 4j3b$	\geq 4j \geq 4b
$p_m((\ell, b)\Delta \eta^{\min})$	p_{T} of the pair of lepton and b-tagged jet with smallest Δp	1		1
$\Delta p_T(j_1, j_3)$	pT difference between leading and third jets	~		~
$\Delta m(j_2 + \ell_1 + E_T^{miss}, j_1 + j_3 + \ell_1)$	Inv. mass difference between $j_2 + \ell_1 + E_T^{miss}$ and $j_1 + j_3 + \ell_1$	~		
$P_T((\ell, b) \Delta R^{\min})$	p_T of the pair of lepton and b-tagged jet with smallest ΔR	~		
$n(i-pair \Delta \eta^{min})$	Inv. mass of the jet pair with smallest Δn	1		
$\Delta p_T(j_1, j_2 + E_T^{miss})$	p_T difference between leading jet and $j_2 + E_T^{miss}$	1		
$p_T(j_1 + j_2 + j_3 + \ell_1)$	$p_T \text{ of } j_1 + j_2 + j_3 + \ell_1$	~		
$\Delta E(\ell_1 + E_T^{miss}, j_1 + j_2)$	Energy difference between $\ell_1 + E_T^{miss}$ and $j_1 + j_2$	~		
$E(j_1)$	Energy of the leading jet	×.	×.	
T (j-pair)	Maximum p _T of any jet pair	~	×.	
$n(b_1 + b_2 + \epsilon_1 + \epsilon_2 + E_T^{mins})$	Inv. mass of $b_1 + b_2 + t_1 + t_2 + E_T^{mass}$		×	
$p_T((\ell, b) \rightarrow \gamma)$	p_T of the lepton-b-jet pair with smallest separation in η		×.	
$\Delta p_T(t_2, u_1 + b_2 + E_T^{miss})$	p_T difference between subleading lepton and $u_1 + b_2 + E_T^{miss}$		×	
$\Delta p_T(\epsilon_2, u_1 + b_1 + E_T)$	p_T difference between subleading lepton and $u_1 + b_1 + E_T^{mins}$		×.	
$\Delta p_T(\ell_2, \ell_1 + E_T)$	p_T difference between subleading lepton and $\ell_1 + E_T^{miss}$			
$\Delta p_T(j_1, j_3 + \ell_1 + E_T^{mass})$	p_T difference between leading jet and $j_3 + \ell_1 + E_T^{mass}$		×	
$\Delta E(\ell_1, j_2 + E_T^{max})$	Energy difference between leading lepton and $j_2 + E_T^{miss}$		×	
m ^{mm} (b-pair)	Smallest invariant mass of any b-tagged jet pair		~	×.
HT.	Scalar sum of all jets and leptons transverse momenta			×,
$p_T(J_3 + \ell_1) = \Delta p_T(b_2, b_1 + \ell_2)$	pT of $j_3 + \ell_1$ pT difference between subleading b-tagged jet and $b_1 + \ell_2$			1
$\Delta p_T(i_2, i_2 + \ell_1 + E_{miss}^{miss})$	pr difference between subleading jet and $i_2 + \ell_1 + E_{miss}^{miss}$			1
$\Delta E(i_2, i_2 + \ell_1 + \ell_2 + E^{miss})$	Energy difference between third jet and $i_2 + \ell_1 + \ell_2 + E_{miss}^{miss}$			1
$\Delta m(j_2 + \ell_2 + E_m^{miss}, j_1 + \ell_2 + E_m^{miss})$	Inv. mass difference between $j_2 + \ell_2 + E_m^{miss}$ and $j_1 + \ell_2 + E_m^{miss}$			4
E E E E CONTRACTE CONTRACTO				

Signal-over-background

Kinematic discriminant

$$D = \frac{P_{H^+}(x)}{P_{H^+}(x) + P_{t\bar{t}}(x)}$$

where

$$P_{H^+}(x) = p(m_{t_\ell})p(m_{W_h})p(m_{t_h} - m_{W_h})p(m_{H^+} - m_{t_{H^+}})$$

and $P_{t\bar{t}}(x)$ is defined similarly. All masses refer to the reconstructed ones and the neutrino is reconstructed from the E_{T}^{miss} and the constraint $m_{W}^{2} = (p_{\ell}^{2} + p_{\nu})^{2}$.

Max Isacson

