The PTOLEMY direct CNB and dark matter detection project #### relic CNB neutrinos $T\sim10^{10}~K\sim1~MeV$ All-permeating sea of relic neutrinos @ E~1 meV 56 cm⁻³ (x 6) ## neutrino capture on β decaying nuclei #### spontaneous nuclear β decay ### neutrino capture on β decaying nuclei #### spontaneous nuclear β decay #### "induced" nuclear β decay ### neutrino capture on β decaying nuclei #### spontaneous nuclear β decay "induced" nuclear β decay This process has no energy threshold The cross section is not vanishing The electron spectrum from induced neutrino capture has a unique signature: there is a gap of 2 m_{ν} centered at Q_{μ} between the signal and the "background" electrons from spontaneous β decay #### CNB detection using tritium Signal to background ratio depends crucially on the energy resolution Δ at the beta decay endpoint Detection possible only if $$\Delta < m_v$$ For a neutrino mass of 0.7 eV and an energy resolution Δ =0.2 eV, a S/B ratio of 3 is obtained. PTOLEMY's target Δ =0.05 eV For 100 gr of Tritium, one expects ~10 capture events per year #### the PTOLEMY concept ## 100g of atomically bonded ³H; use tritiated graphene (~0.5 kg) #### Source: single atomic layer of T on graphene substrate #### <u>Filter</u>: MAC-E filter (Magnetic Adiabatic Collimation+Electrostatic) The PTOLEMY prototype @ Princeton #### <u>Calorimeter</u>: Cryogenic Transition Edge Sensor (TES) T Source MAC-E filter #### PTOLEMY as a directional DM detector - PTOLEMY without tritium load and a graphene field effect transistor (FET) target array - Sensitive to DM+e- interactions - FETs provide directionality measurement - TES provides sensitivity to low eenergies, ie, to MeV dark matter - Graphene target can be molded to increase directionality sensitivity (nanotubes, nano-ribbons...) ## the PTOLEMY collaboration #### **Sweden:** A. Ferella, J. Gudmundsson, J. Conrad, C-F Strid (SU), C. de los Heros (UU) Working on the static electromagnetic filter simulation and on the optimisation of the source-filter coupling # Letter of Intent to the Laboratori Nazionali del GranSasso (Italy) PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark Matter ``` E. Baracchini³, M.G. Betti¹¹, M. Biasotti⁵, F. Calle-Gomez¹⁵, G. Cavoto^{10,11}, C. Chang^{22,23} A.G. Cocco⁷, A.P. Colijn¹³, J. Conrad¹⁸, N. D'Ambrosio², M. Faverzani⁶, A. Ferella¹⁸, P. Fer- nandez de Salas¹⁶, E. Ferri⁶, P. Garcia¹⁴, G. Garcia Gomez-Tejedor¹⁵, S. Gariazzo¹⁷, F. Gatti⁵. C. Gentile²⁵, A. Giachero⁶, J. Godmundsson¹⁸, Y. Hochberg¹, Y. Kahn²⁶, M. Lisanti²⁶, C. Mancini- Terracciano¹⁰, G. Mangano⁷, L.E. Marcucci⁹, C. Mariani¹¹, G. Mazzitelli⁴, M. Messina²⁰, A. Molinero-Vela¹⁴, E. Monticone¹², A. Nucciotti⁶, F. Pandolfi¹⁰, S. Pastor-Carpi¹⁷, C. Pérez de los Heros¹⁹ O. Pisanti^{7,8}, A. Polosa^{10,11}, A. Puiu⁶, M. Rajteri¹², R. Santorelli¹⁴, K. Schaeffner³, C.G. Tully²⁶ Y. Raitses²⁵, N. Rossi¹⁰, F. Zhao²⁶, K.M. Zurek^{21,22} ¹Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel ²INFN Laboratori Nazionali del Gran Sasso, L'Aquila, Italy ³Gran Sasso Science Institute (GSSI), L'Aquila, Italy ⁴INFN Laboratori Nazionali di Frascati, Frascati, Italy ⁵Università degli Studi di Genova e INFN Sezione di Genova, Genova, Italy ⁶Università degli Studi di Milano-Bicocca e INFN Sezione di Milano-Bicocca, Milano, Italy ⁷INFN Sezione di Napoli, Napoli, Italy ⁸Università degli Studi di Napoli Federico II, Napoli, Italy ⁹Università degli Studi di Pisa e INFN Sezione di Pisa, Pisa, Italy ¹⁰INFN Sezione di Roma, Roma, Italy ¹¹Università degli Studi di Roma La Sapienza, Roma, Italy ¹²Istituto Nazionale di Ricerca Metrologica (INRiM), Torino, Italy ¹³Nationaal instituut voor subatomaire fysica (NIKHEF), Amsterdam, Netherlands ¹⁴Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain ¹⁵Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain ¹⁶Universidad Politécnica de Madrid, Madrid, Spain ¹⁷Instituto de Física Corpuscular (IFIC), Valencia, Spain ¹⁸Stockholm University, Stockholm, Sweden ¹⁹Uppsala University, Uppsala, Sweden ²⁰New York University Abu Dhabi, Abu Dhabi, UAE ²¹Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA ²²Department of Physics, University of California, Berkeley, CA, USA ²³Argonne National Laboratory, Chicago, IL, USA ²⁴Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL, USA ²⁵Princeton Plasma Physics Laboratory, Princeton, NJ, USA ``` Submitted: March 19th, 2018 GS Scientific Committee green light: May 31st 3.5 1 40 0040 ²⁶Department of Physics, Princeton University, Princeton, NJ, USA A lot of R&D to be done What was "impossible" a few years ago is now just "challenging" PTOLEMY has become an LNGS experiment and a prototype installation is starting at the lab A first phase of PTOLEMY will be to look for light Dark Matter with directional sensitivity The second phase, with a Tritium source, will be devoted to measure the CNB New collaborators welcome. Chance to contribute from the first stages of the experiment ## (Magnetic Adiabatic Colimation+Electrostatic) #### Phase I Proof-of-principle @ LNGS: TES, Graphene, background level (3 to 5 years) #### Phase II Technical design for a scalable detector #### Phase III Full detector construction and search for relic neutrino (7 events/100 g Tritium expected) # New E×B filtering design (Top view) Example of 15 keV electron loosing transverse energy as the B field intensity decrease (drift is from the right to the left) ## PTOLEMY-G³ #### **Detector configuration** - ► Scaling up ~mm to ~cm - Stacked planar arrays of G-FETs 1kg ~ 10¹⁰cm² ~ 10⁹ cm³ Individually vacuum-sealed wafers Cryogenically cooled (4.2K) Cryopumping of gas contaminants on G3 surface - no line-of-sight trajectories Low mass substrates with ALD dielectric # What is special about Graphene? SH H SNOCK 13 - Geim et al. in 2004 noted gaphene sensitivity to a single electric charge (added or removed) in a Field-Effect Transistor configuration - here at room temperature - It is a semimetal: Dirac point provides a resistivity spike at a single gate voltage and the height is set by the inverse of the mobility - Mobility increases by an order of magnitude at cryogenic temperatures - Small band gap (meV) induced in Graphene could provide clean on/off transitions