

Why search for doubly charged Higgs?

- •Doubly charged Higgs bosons can arise in various BSM theories
	- Left-right symmetric models, Higgs triplet models, little Higgs model, type-II seesaw models, …
- Closely related to generation mechanism of neutrino mass.
- Hint for the existence of supersymmetry.
- Can decay to a pair of same-sign leptons which are rare in SM.

Feynman diagrams for several doubly charged Higgs production channel. arXiv:1105.1379v1

Previous study by ATLAS on $H^{\pm\pm} \rightarrow l^{\pm} l^{\prime\pm}$

- Used pp data sample with Integrated luminosity 36.1 fb^{-1} collected in 2015 and 2016 by the ATLAS detector at the LHC at \sqrt{s} =13 TeV
- Only pair production via the Drell–Yan process was considered
- Total assumed branching ratio of $H^{\pm\pm}$ is $B(H^{\pm \pm} \to l^{\pm} l^{\prime \pm}) + B(H^{\pm \pm} \to X) = 100\%$, while "X" does not enter any of the SRs. Only e and μ were considered.
- Partial decay width of $H^{\pm\pm}$ to leptons is given by:

Drell-Yan pair production

$$
\Gamma(H^{\pm \pm} \to l^{\pm} l^{\prime \pm}) = \frac{1}{1 + \delta_{ll'}} \frac{|\tilde{n}_{ll'}|^2 m_{H^{\pm \pm}}}{16\pi}, \, \tilde{h}_{ll'} = \begin{cases} 2h_{ll'} & l = l' \\ h_{ll'} & l \neq l' \end{cases}
$$

• Masses studied: $200 \le m_{H^{\pm\pm}} \le 1300$ GeV

Previous study by ATLAS on $H^{\pm\pm} \rightarrow l^{\pm} l^{\prime\pm}$

- Used pp data sample with Integrated luminosity 36.1 fb^{-1} collected in 2015 and 2016 by the ATLAS detector at the LHC at \sqrt{s} =13 TeV
- Only pair production via the Drell–Yan process was considered
- Total assumed branching ratio of $H^{\pm\pm}$ is $B(H^{\pm \pm} \to l^{\pm} l^{\prime \pm}) + B(H^{\pm \pm} \to X) = 100\%$, while "X" does not enter any of the SRs. Only e and μ were considered.
- Partial decay width of $H^{\pm\pm}$ to leptons is given by:

$$
\Gamma(H^{\pm \pm} \to l^{\pm} l^{\prime \pm}) = \frac{1}{1 + \delta_{ll'}} \frac{|\tilde{h}_{ll'}|^2 m_{H^{\pm \pm}}}{16\pi}, \tilde{h}_{ll'} = \begin{cases} 2h_{ll'} & l = l' \\ h_{ll'} & l \neq l' \end{cases}
$$

• Masses studied: $200 \le m_{H^{\pm\pm}} \le 1300$ GeV ll' 2 $= 2 \left| m_{\nu}^{\prime} \right|$ ij ²

 $/v_\Delta^2$

Branching ratios of $H^{\pm\pm}$ into different final states vs. mass of $H^{\pm\pm}$ for $v_{\Delta}=1$ GeV, $_{\rm 0}$ $h_{ll} = 0.01$. arXiv:1105.1379v1

Previous study by ATLAS on $H^{\pm\pm} \rightarrow l^{\pm} l^{\prime\pm}$

- Used pp data sample with Integrated luminosity 36.1 fb^{-1} collected in 2015 and 2016 by the ATLAS detector at the LHC at \sqrt{s} =13 TeV
- Only pair production via the Drell–Yan process was considered
- Total assumed branching ratio of $H^{\pm\pm}$ is $B(H^{\pm \pm} \to l^{\pm} l^{\prime \pm}) + B(H^{\pm \pm} \to X) = 100\%$, while "X" does not enter any of the SRs. Only e and μ were considered.
- Partial decay width of $H^{\pm\pm}$ to leptons is given by:

Branching ratios of $H^{\pm\pm}$ into different final states vs. vacuum expectation value. arXiv:1611.09594v2

$$
\Gamma(H^{\pm \pm} \to l^{\pm} l^{\prime \pm}) = \frac{1}{1 + \delta_{ll'}} \frac{|\tilde{h}_{ll'}|^2 m_{H^{\pm \pm}}}{16\pi} , \tilde{h}_{ll'} = \begin{cases} 2h_{ll'} & l = l' \\ h_{ll'} & l \neq l' \end{cases}
$$

• Masses studied: $200 \le m_{H^{\pm\pm}} \le 1300$ GeV $\tilde{h}_{ll'}$ 2 $= 2 \left| m_{\nu}^{\prime} \right|$ ij ² $/v_\Delta^2$

 $\rightarrow ab)$

 $Br(H^{++}$

±± Lower-limit plots on H_L^{\pm} and H_R^{\pm} 100 F^{-} 100 p $B(H^{\pm\pm}_{\text{R}} \rightarrow {f}^{\pm}) = 1-B(H^{\pm\pm}_{\text{R}} \rightarrow X)$ [%] $B(H^{\pm\pm}_{\perp} \rightarrow f^{\pm}) = 1 - B(H^{\pm\pm}_{\perp} \rightarrow X)$ [%] minimum limit minimum limit 40 40 30 30 20 20 10 **ATLAS** $10 \vdash$ \sqrt{s} =13 TeV, 36.1 fb⁻¹ lower limit of m($H_{\text{D}}^{\pm\pm}$) Observed 95% CL limit Expected 95% CL limit $\overline{2}$ Expected limit $\pm 1\sigma$ Expected limit $\pm 2\sigma$ 300 400 500 600 700 800 900 1000 300 400 $m(H_R⁺⁺)$ [GeV]

arXiv: 1710.09748v1

What's next??

Add tau to the analysis!

- •Excellent probe to new physics due to heavy mass (larger coupling to the SM Higgs)
- Based on the lower limits on $H^{\pm\pm}$, it's likely that tau appears in the decay products
- •Only interested in hadronic decay modes of tau

What am I working on..

- •Add hadronically decaying taus to the current analysis framework (TNAnalysis)
- Apply selections on the ntuples (Sherpa 2.2.1 $Z \rightarrow \tau \tau$ and data taken from 2015 to 2017)
	- $\cdot p_T \geq 30$ GeV
	- Trigger matching (HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo)
	- Truth info matching (only for MC)
- •Use data-driven method to perform charge flip rate estimation

Charge flip for tau

-
- Types of charge flip for electrons
• Stiff tracks (high $p_T \rightarrow$ straighter tracks)
• Trident events
	-
- Assume Poissonian distribution for expected number of charge flipped events λ

where λ is a function of the charge flip probability $\epsilon(p_T, \eta) = f(\eta) \cdot \sigma(p_T)$. Require $f(\eta)$ to be normalized.

$$
P(N_{SS}; \lambda) = \frac{\lambda^{N_{SS}} e^{-\lambda}}{N_{SS}!}
$$

• The expected number of charge flipped events:

$$
\lambda_{i,j} = \epsilon_i \left(1 - \epsilon_j \right) N_{AS}^{ij} + \left(1 - \epsilon_i \right) \epsilon_j N_{AS}^{ij}
$$

• Maximum likelihood method

$$
\mathcal{L}(\lambda; N_{SS}) = \prod_{N_{SS}} P(N_{SS}; \lambda) = \prod_{N_{SS}} \frac{\lambda^{N_{SS}} e^{-\lambda}}{N_{SS}!}
$$

 Z

$Z \rightarrow \tau \tau$ mass spectrum of MC

$Z \rightarrow \tau \tau$ mass spectrum of data

Current results on charge-flip rate for MC without prongness

Closure test on the charge-flip rate of taus $\times 10^6$ E
 V ⁶
 $\frac{1}{2}$
 $\frac{1}{2}$ Events / GeV ATLAS \bullet OC data **ATLAS** work in progress $Z \rightarrow ee$ peak $Z \rightarrow \tau \tau$ peak \sqrt{s} = 13 TeV, 79.8 fb⁻¹ 1.8 \sqrt{s} = 13 TeV, 36.1 fb⁻¹ 600 -Charge-flip rates closure test 1.6 $\epsilon_i (1 - \epsilon_j) N_{AS}^{ij} + (1 - \epsilon_i) \epsilon_j N_{AS}^{ij}$ **SC MC** 500 1.4 Pred. from AS H 400 300 0.8 0.6 200 0.4 100 0.2 O 85 90 80 75 2.0 **MC/pred** .5 arXiv: 1710.09748v1 1.0 0.5 0.90 50 80 120 $\overline{130}$ 90 100 40 60 70 110 Mass (GeV)

What about charge-flip rate including prongness?

- •Still working on it…
- •Challenges
	- •Two times more parameters to minimize
		- $\epsilon(p_T, \eta, prongness) = f(\eta) \cdot \sigma(p_T) \cdot Y(prongness)$
	- •The current minimization method need to be modified as normalization requirement on η does not seem to work well if we have $\eta_{1-prong}$ and $\eta_{3-prong}$

Future plans

- •Perform charge-flip rate on 1-prong and 3-prong taus.
- •Data have huge background. More studies on the background is required.

Backup slides

Previous H $+ +$ $+$ H − − \rightarrow l + + −

- Selection:
	- e and μ
	- 2-, 3-, and 4 -lepton final states
	- b -jet veto
	- Z veto on 1P3L & 2P4L
	- ΔR , p_T cuts
- Signal regions
	- 1P2L, 1P3L, 2P4L
- Control regions
	- Opposite-charge control region
	- Diboson control region
	- \bullet Diboson in 4l region
- Validation regions
	- Same-charge validation region
	- 3*l* validation region
	- 4*l* validation region

1710.09748v1 arXiv: 1710.09748v1

Relative uncertainties in the total background yield estimation

arXiv: 1710.09748v1

Summary of the results from previous study

mit for mass

tween 770 870 GeV

 $0 GeV$

tween 660 **760 GeV**

 $0 GeV$

Charge-flip rate for electrons

