

Why search for doubly charged Higgs?

- Doubly charged Higgs bosons can arise in various BSM theories
 - Left-right symmetric models, Higgs triplet models, little Higgs model, type-II seesaw models, ...
- Closely related to generation mechanism of neutrino mass.
- Hint for the existence of supersymmetry.
- Can decay to a pair of same-sign leptons which are rare in SM.

Feynman diagrams for several doubly charged Higgs production channel. arXiv:1105.1379v1

Previous study by ATLAS on $H^{\pm\pm} \rightarrow l^{\pm}l'^{\pm}$

- Used pp data sample with Integrated luminosity 36.1 fb^{-1} collected in 2015 and 2016 by the ATLAS detector at the LHC at \sqrt{s} =13 TeV
- Only pair production via the Drell–Yan process was considered
- Total assumed branching ratio of H^{±±} is
 B(H^{±±} → l[±]l'[±]) + B(H^{±±} → X) = 100%, while "X"
 does not enter any of the SRs. Only *e* and μ were
 considered.
- Partial decay width of $H^{\pm\pm}$ to leptons is given by:

$$\Gamma(H^{\pm\pm} \to l^{\pm}l'^{\pm}) = \frac{1}{1+\delta_{ll'}} \frac{|\tilde{h}_{ll'}|^2 m_{H^{\pm\pm}}}{16\pi}, \tilde{h}_{ll'} = \begin{cases} 2h_{ll'} & l = l' \\ h_{ll'} & l \neq l' \end{cases}$$

• Masses studied: $200 \leq m_{H^{\pm\pm}} \leq 1300~{\rm GeV}$

Drell-Yan pair production

Previous study by ATLAS on $H^{\pm\pm} \rightarrow l^{\pm}l'^{\pm}$

- Used pp data sample with Integrated luminosity 36.1 fb^{-1} collected in 2015 and 2016 by the ATLAS detector at the LHC at \sqrt{s} =13 TeV
- Only pair production via the Drell–Yan process was considered
- Total assumed branching ratio of $H^{\pm\pm}$ is $B(H^{\pm\pm} \to l^{\pm}l'^{\pm}) + B(H^{\pm\pm} \to X) = 100\%$, while "X" does not enter any of the SRs. Only e and μ were considered.
- Partial decay width of $H^{\pm\pm}$ to leptons is given by:

$$\Gamma(H^{\pm\pm} \to l^{\pm}l'^{\pm}) = \frac{1}{1+\delta_{ll'}} \frac{|\tilde{h}_{ll'}|^2 m_{H^{\pm\pm}}}{16\pi}, \tilde{h}_{ll'} = \begin{cases} 2h_{ll'} & l = l' \\ h_{ll'} & l \neq l' \end{cases}$$

• Masses studied: $200 \le m_{H^{\pm\pm}} \le 1300 \text{ GeV}$ $\left|\tilde{h}_{ll'}\right|^2 = 2\left|m_{\nu}^{ij}\right|^2 / v_{\Delta}^2$

Branching ratios of $H^{\pm\pm}$ into different final states vs. mass of $H^{\pm\pm}$ for $v_{\Lambda} = 1$ GeV, $h_{ll} = 0.01$. arXiv:1105.1379v1

Previous study by ATLAS on $H^{\pm\pm} \rightarrow l^{\pm}l'^{\pm}$

- Used pp data sample with Integrated luminosity 36.1 fb^{-1} collected in 2015 and 2016 by the ATLAS detector at the LHC at \sqrt{s} =13 TeV
- Only pair production via the Drell–Yan process was considered
- Total assumed branching ratio of H^{±±} is B(H^{±±} → l[±]l'[±]) + B(H^{±±} → X) = 100%, while "X" does not enter any of the SRs. Only *e* and μ were considered.
- Partial decay width of $H^{\pm\pm}$ to leptons is given by:

$$\Gamma(H^{\pm\pm} \to l^{\pm}l'^{\pm}) = \frac{1}{1+\delta_{ll'}} \frac{|\tilde{h}_{ll'}|^2 m_{H^{\pm\pm}}}{16\pi}, \tilde{h}_{ll'} = \begin{cases} 2h_{ll'} & l = l' \\ h_{ll'} & l \neq l' \end{cases}$$

• Masses studied: $200 \le m_{H^{\pm\pm}} \le 1300 \text{ GeV} |\tilde{h}_{ll'}|^2 = 2 |m_{\nu}^{ij}|^2 / v_{\Delta}^2$

 $\rightarrow ab)$

 $Br(H^{++}$

Branching ratios of $H^{\pm\pm}$ into different final states vs. vacuum expectation value. arXiv:1611.09594v2

arXiv: 1710.09748v1

What's next??

Add tau to the analysis!

- Excellent probe to new physics due to heavy mass (larger coupling to the SM Higgs)
- Based on the lower limits on $H^{\pm\pm}$, it's likely that tau appears in the decay products
- Only interested in hadronic decay modes of tau

What am I working on...

- Add hadronically decaying taus to the current analysis framework (TNAnalysis)
- Apply selections on the ntuples (Sherpa 2.2.1 $Z \rightarrow \tau \tau$ and data taken from 2015 to 2017)
 - $p_T \geq 30 \text{ GeV}$
 - Trigger matching (HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo)
 - Truth info matching (only for MC)
- Use data-driven method to perform charge flip rate estimation

Charge flip for tau

- Types of charge flip for electrons
 - Stiff tracks (high $p_T \rightarrow$ straighter tracks)
 - Trident events
- Assume Poissonian distribution for expected number of charge flipped events λ

$$P(N_{SS};\lambda) = \frac{\lambda^{N_{SS}}e^{-\lambda}}{N_{SS}!}$$

where λ is a function of the charge flip probability $\epsilon(p_T, \eta) = f(\eta) \cdot \sigma(p_T)$. Require $f(\eta)$ to be normalized.

• The expected number of charge flipped events:

$$\lambda_{i,j} = \epsilon_i (1 - \epsilon_j) N_{AS}^{ij} + (1 - \epsilon_i) \epsilon_j N_{AS}^{ij}$$

Maximum likelihood method

$$\mathcal{L}(\lambda; N_{SS}) = \prod_{N_{SS}} P(N_{SS}; \lambda) = \prod_{N_{SS}} \frac{\lambda^{N_{SS}} e^{-\lambda}}{N_{SS}!}$$

$Z \rightarrow \tau \tau$ mass spectrum of MC

$Z \rightarrow \tau \tau$ mass spectrum of data

Current results on charge-flip rate for MC without prongness

What about charge-flip rate including prongness?

- •Still working on it...
- •Challenges
 - •Two times more parameters to minimize
 - $\epsilon(p_T, \eta, prongness) = f(\eta) \cdot \sigma(p_T) \cdot Y(prongness)$
 - The current minimization method need to be modified as normalization requirement on η does not seem to work well if we have $\eta_{1-prong}$ and $\eta_{3-prong}$

Future plans

- •Perform charge-flip rate on 1-prong and 3-prong taus.
- Data have huge background. More studies on the background is required.

ng taus. the background is

Backup slides

Previous $H^{++} + H^{--} \rightarrow l^+ l^+ l^- l^-$ analysis

- Selection:
 - e and μ
 - 2-, 3-, and 4-lepton final states
 - b-jet veto
 - Z veto on 1P3L & 2P4L
 - ΔR , p_T cuts
- Signal regions
 - 1P2L, 1P3L, 2P4L
- Control regions
 - Opposite-charge control region
 - Diboson control region
 - Diboson in 4*l* region
- Validation regions
 - Same-charge validation region
 - 3*l* validation region
 - 4*l* validation region

arXiv: 1710.09748v1

Relative uncertainties in the total background yield estimation

arXiv: 1710.09748v1

Summary of the results from previous study

Branching ratio assumption	Type of $H^{\pm\pm}$	Lower lir
$Br(H^{\pm\pm} \rightarrow l^{\pm\pm}) = 100\%$	$H_L^{\pm\pm}$	Vary be and a
$Br(H^{\pm\pm} \to l^{\pm\pm}) = 10\%$	$H_L^{\pm\pm}$	45
$Br(H^{\pm\pm} \rightarrow l^{\pm\pm}) = 100\%$	$H_R^{\pm\pm}$	Vary be and
$Br(H^{\pm\pm} \to l^{\pm\pm}) = 10\%$	$H_R^{\pm\pm}$	32

mit for mass

etween 770 870 GeV

0 GeV

etween 660 760 GeV

0 GeV

Charge-flip rate for electrons

