

The SHiP experiment at the CERN SPS

Richard Brenner- Uppsala University

Why (to) Search for Hidden Particles?

- Higgs boson found and consistent with SM Higgs (so far)
- Higgs mass located in a meta-stability wedge:
 - \rightarrow Vacuum might be stable or has $\tau >> \tau$ (universe)
 - → SM may work successfully up to the Planck scale i.e. no need for a new mass scale.
- Flavor Physics consistent with SM predictions (so far).
- No new particles found at LHC (so far).

Shortcomings in SM

- matter anti-matter asymmetry in universe
- neutrino mixing → masses
- Non-baryonic dark matter

How many new particles are needed to fix the above?

vMSM: T. Asaka, M. Shaposhnikov PL B620 (2005) 17

- Adding three right-handed Majorana Heavy Neutral Leptons (HNL): N_1 , N_2 and N_3
- N₁ can provide dark matter candidate
- N_{2,3} can provide neutrino masses via Seesaw mechanism
- N_{2,3} can induce leptogenesis → baryogenesis

N₁: the Dark Matter candidate

Signature: $N_1 \rightarrow v \gamma$

3.5 keV photon line originally observed in several galaxy clusters and Andromeda (M31) at 4-5σ (Bulbul et al1402.2301, Boyarsky et al 1402.4119).

Many papers on arXiv

Expected to improve understanding with the Hitomi satellite equipped with a superb Soft X-Ray Spectrometer

Hitomi

- Hitomi (Astro-H) launched February 17, lost March 26, 2016;
- Hitomi can distinguish between atomic line broadening (thermal velocities ~ 10² km/sec) and decaying dark matter line broadening (virial velocity ~ 10³ km/sec)
- Before its loss, observed Perseus cluster core in calibration phase

- Hitomi constraints on the 3.5 keV line in the Perseus galaxy cluster (arXiv:1607.07420)
- Bounds much weaker for a broad (dark matter) line → not at tension with previous detections
- "The inconsistency with Hitomi is at a 99% significance for a broad dark-matter line and at 99.7% for a narrow line from the gas."

Next X-ray missions

- Micro-X sounding rocket experiment (2019+) large field-of-view, large energy resolution, very small exposure - will probe Galacticc Center+Bulge region (ApJ'15 [1506.05519]);
- Hitomi-2 planned to launch by NASA during 2020-2021;
- Athena large ESA mission (2028+), very large resolution and collecting area (each 10×XMM-Newton) will probe individual DM haloes (e.g. galaxy clusters).

N_{2,3} production and decay

- N_{2,3} mix with active neutrinos:
- produced in semileptonic decays of K, D, B (low mass) mesons and from Z decays (high mass)
- Decays in N \rightarrow μ /e π , μ /e rho, ν μ e, etc.)

The SHIP experiment

400 GeV p-beam:

• 2 × 10 20 pot in 5 years

• Peak power: 2.6 MW

HNL detection

- 5 × 10 m 2 straw chambers
- Low-field magnet: σ(M HNL) ≈ 15 MeV
- $\gamma/e/\pi/\mu$: Calorimetry+ μ -detector

Background

- Low pressure
- Sourounding scintillatords
- 100 ps timimng

Sensitivity

P. Mermod: https://arxiv.org/pdf/1712.01768.pdf

SHIP roadmap

SHiP Collaboration:

- 49 institutes (UU, SU)
- 17 countries (Sweden)
- ~ 200 members
- 2018: SHiP Comprehensive Design Reports
- Optimized SHiP detector. R&D on crucial elements.
- New background studies, new (improved!) sensitivities.
- 2019-2020: European Strategy Meeting → SHiP Approval....
- 2026: First data taking.