## Cosmology 2025 @ Elba Island



Contribution ID: 206 Type: Poster

## Explaining the H0 Tension via the Local Hole and CMB Lensing

Friday 12 September 2025 09:10 (40 minutes)

Observational evidence for a large local galaxy underdensity goes back to the 1990's and, like the "Hubble tension", remains unexplained by standard \( \text{QCDM} \). Wong et al (2022) show that this "Local Hole" covers >90% of the sky out to "200Mpc with an "20-30% underdensity, consistent with previous observations (e.g. Keenan, Barger and Cowie, 2014). We have speculated that this underdensity could explain the H0 tension but an even larger/more underdense "Hole" would be required, uncomfortable given that the current Local Hole is already a 4\( \text{M} \) deviation from \( \text{MCDM} \). However, recall that we are only measuring galaxy density and biasing has to be taken into account. Crucially, Kaur et al (2025) find that galaxy-CMB lensing results from Planck+ACT give significantly higher amplitudes at 2-halo scales than predicted. These results argue for an anti-bias that increases the local mass underdensity to "50% over 200Mpc, enough to explain the Hubble tension (eg Huterer 2023), although remaining in disagreement with \( \text{MCDM} \).

## References

"The local hole: a galaxy underdensity covering 90 per cent of sky to ≈200 Mpc", Wong J.H.W., Shanks T., Metcalfe N. and Whitbourn J.R., 2022, MNRAS, 511, 5742.

Author: SHANKS, Tom (Durham University, UK)Presenter: SHANKS, Tom (Durham University, UK)Session Classification: Morning session 5

Track Classification: The current Cosmological Model and its Tensions (Theory and observations)