Highlights from the Pierre Auger Observatory

on behalf of the Pierre Auger Observatory

Cosmology 2023 in Miramare, Italy, September 1st 2023

Ultra High Energy Cosmic Rays

Pierre Auger Observatory

Area: 3000 km²

Located in the Pampa Amarilla, Mendoza, Argentina Altitude: 1400 m a.s.l.

Pierre Auger Collaboration

Argentina Australia Belgium Brazil Colombia Czech Republic France Germany Italy Mexico Netherlands Poland Portugal Romania Slovenia Spain USA

International collaboration of 17 Countries and ~ 400 scientists

ruben@lip.pt

Pierre Auger Observatory

- 4 Fluorescence Detectors (FD)
- 6 x 4 Fluorescence Telescopes

- 1600 Surface Detectors (SD) Stations
- SD stations spaced by 1.5 km
- Covering an area of 3000 km²

Surface detector

WCD + Fluorescence Detector

Pierre Auger Observatory (Low energy extensions)

\diamond **HEAT**

♦ 3 additional FD telescopes with a high elevation FoV 30° - 60°, $E > 10^{17} \, {\rm eV}$

- ♦ Infill Denser array
 - ♦ 433 m grid with 19 stations
 - \Rightarrow 750 m grid with 61 stations
- AMIGA Buried scintillators (muon detectors)
 - ♦ 19 (61) stations in 433 (750) m array, $10^{16.5} < E/eV < 10^{19}$
 - \Rightarrow 30 (60) m² scintillator modules
 - ♦ 2.3 m below ground

Auger Engineering Radio Array (AREA)

♦ 153 antennas in 17 km², $E > 4 \times 10^{18} \text{ eV}$

Ultra High Energy Cosmic Rays

Fluorescence Detector

- Quasi-calorimetric energy measurement
- ♦ ~ 15% duty cycle

Surface Detector

Sensitive to both e.m. and muonic shower components

♦ Calibration of SD with FD

- ♦ FD provides a quasi-calorimetric energy measurement
- Improve geometry reconstruction ♦ For hybrid events
- ♦ Better assess/control systematic uncertainties
- Different insights of the shower
 - Access different shower components
 - ♦ Test shower consistency

Hybrid technique

Ruben Conceição

Ultra High Energy Cosmic Rays What have we learned so far?

The suppression effect can either be explained by a propagation effect (e.g. GZK) or by the **source** exhaustion

ruben@lip.pt

Arrival directions: large scale

Dipole pointing ~ 113° away from the GC established at 6.9σ for energies > 10^{18} eV

ruben@lip.pt

Science 357 (2017) no.6537, 1266-1270

Arrival directions: intermediate scale

 \diamond The most significant excess at Cen A 4σ Several likelihood tests for correction of arrival direction with astrophysical catalogs
 \diamond Most significant signal at 3.8 σ for Star Burst Galaxies catalog

Ruben Conceição

Neutral particles searches

Photons

No UHE photons or neutrino have been observed yet

ruben@lip.pt

Neutrinos

Composition fits to X_{max}

The primary **composition** goes from **light to heavier** as its energy increases

ruben@lip.pt

Mass composition enhanced anisotropy

 \Rightarrow Heavier composition from the galactic plane (< 4 σ) \diamond Combined spectrum + composition fit suggest an acceleration mechanism $\propto A$

Exploration of inclined showers

- \diamond Muons \rightarrow Assess Hadronic interaction models
- ♦ Data selection
 - ♦ Zenith angles [62°; 80°]
 - $* E > 4 \times 10^{18} eV$

 \diamond Inclined shower \rightarrow Muons

Energy given by the Fluorescence Detector

 $\rho_{\mu}(\text{data}) = N_{19} \cdot \rho_{\mu}(\text{QGSJETII03}, p, E = 10^{19} eV, \theta)$

$$R_{\mu} = \frac{N_{\mu}^{data}}{N_{\mu,19}^{MC}}$$

Measurement of the EAS muon content

- Done using hybrid inclined showers
- ♦ Perform a likelihood fit including all reconstruction uncertainties (detector, energy...)
- Extraction of the two first momenta of the muon distribution as a function of the primary energy
 A second sec

Sensitive to the EAS muon number - R_{μ}

Phys.Rev.Lett. 126 (2021) 15, 152002

Sensitive to the EAS calorimetric energy - E

E / eV

The EAS muon puzzle @ Auger

Eur.Phys.J.C 80 (2020) 8, 751

Phys.Rev.Lett. 126 (2021) 15, 152002

EAS muon fluctuations

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data

EAS muon fluctuations

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

 α_1 is the fraction of energy going into the hadronic sector in the first interaction

$$\sigma(\alpha_1) \rightarrow 70 \% \sigma(N_\mu)$$

EAS muon fluctuations

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data

L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

 α_1 is the fraction of energy going into the hadronic sector in the first interaction

$$\sigma(\alpha_1) \rightarrow 70 \% \sigma(N_\mu)$$

Suggestion that muon deficit might be related with description of low energy interactions

Many other EAS measurements...

Phys.Rev.Lett. 109 (2012) 062002

JCAP 1903 (2019) no.03, 018

Measurement of the proton-air crosssection at E~10¹⁸ eV Measurement of average e.m. longitudinal profile shape Phys.Rev.D 96 (2017) 12, 122003

PoS ICRC (2021) 310

Measurement of time profiles of the signals recorded with the water-Cherenkov detectors

Simultaneous fits to the X_{max} (FD) and the ground signal (SD)

Pierre Auger Observatory The future of the observatory

Auger Prime detectors

New electronics (UUB) and Scintillators(SSD)

Underground Muon Detector (UMD)

Auger Phase I data taking from 2004 on (from 2008 with the full array) to 2021

Auger Phase II data taking from 2022 to 2035

Ruben Conceição

High dynamic range PMTs

AugerPrime timeline

(A plethora of measurements to fully understand the shower)

Multi-hybrid shower events

Summary

- Increasingly coherent picture emerging from Auger Phase I data (note that only a few results were shown: e.g. BSM searches, geo-cosmo physics...)
- The mass composition determination is essential to rule out scenarios
- The post-LHC hadronic interaction models are unable to provide a consistent description of the measured showers
- In the next years, a new set of multi-hybrid shower measurements (Auger Phase II) will be available to further constrain hadronic interactions properties in EAS

UHECR **Physics**

Acknowledgements

Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

REPÚBLICA PORTUGUESA

