Primordial Black Hole formation during the QCD phase transition

Ilia Musco

INFN Fellini Fellow - *SAPIENZA* University of Rome **Visitor -** Queen Mary University of London (June - November 2023)

Cosmology in Miramare 2023 (Trieste)

1 September 2023

HORIZON 2020 G.A. n. 754496

PBH evolution

Numerical Results: PBH formation, mass distribution

IM, J. Miller, Rezzolla, Polnarev - CQG (2005 - 2013)

 \mathcal{K}, δ_c – shape dependent

Initial conditions: curvature profile

• The asymptotic metric ($t \rightarrow \theta$), describing super-horizon cosmological perturbations in the comoving synchronous gauge can be written as:

$$ds^2 \simeq -dt^2 + a^2(t)e^{2\zeta(r)} \left[dr^2 + r^2 d\Omega^2 \right]$$

• In the "linear regime" of cosmological perturbations, adiabatic perturbations on super horizon scales can be described by a time independent curvature profile using the **quasi-homogeneous / gradient expansion approach**.

$$\frac{\delta\rho}{\rho_b} = -\left(\frac{1}{aH}\right)^2 \frac{4}{9} \left[\nabla^2 \zeta(r) + \left(\frac{1}{2} \left(\nabla \zeta(r)\right)^2\right)\right] e^{-2\zeta(r)}$$

• The perturbation amplitude δ is measured by the peak of the compaction function, corresponding to the excess of mass of the over density.

$$\mathcal{C}(r) := \frac{2[M(r,t) - M_b(r,t)]}{R(r,t)} = \left[-\frac{4}{3}\tilde{r}\zeta'(r)\right] \left[1 + \frac{1}{2}\tilde{r}\zeta'(r)\right] \quad \Rightarrow \quad \delta = \delta_G \left[1 - \frac{3}{8}\delta_G\right]$$

Shape parameter

$$\mathcal{C}'(r_m) = 0, \quad \Phi_m \equiv -r_m \zeta'(r_m)$$

$$\delta(r_m, t_H) = 3\frac{\delta\rho}{\rho_b}(r_m, t_H)$$

$$\tilde{r} = r e^{\zeta(r)}$$

$$\alpha \equiv -\frac{\mathcal{C}''(\tilde{r}_m)\tilde{r}_m^2}{4\mathcal{C}(\tilde{r}_m)} = \frac{\alpha_G}{\left(1 - \frac{1}{2}\Phi_m\right)\left(1 - \Phi_m\right)}$$

$$0.4 \le \delta_c(\alpha) \le \frac{2}{3}$$

I. Musco - PRD (2019)

PBH threshold prescription

Curvature power spectrum \mathcal{P}_{ζ}

Characteristic overdensity scale $k_* \hat{r}_m$

Characteristic shape parameter α

IM, De Luca, Franciolini, Riotto - PRD (2021)

1. The power spectrum of the curvature perturbation: take the primordial power spectrum \mathcal{P}_{ζ} of the Gaussian curvature perturbation and compute, on superhorizon scales, its convolution with the transfer function $T(k, \eta)$

$$P_{\zeta}(k,\eta) = \frac{2\pi^2}{k^3} \mathcal{P}_{\zeta}(k) T^2(k,\eta).$$

2. The comoving length scale \hat{r}_m of the perturbation is related to the characteristic scale k_* of the power spectrum P_{ζ} . Compute the value of $k_*\hat{r}_m$ by solving the following integral equation

E

$$\mathbf{E}^{\int dkk^2 \left[(k^2 \hat{r}_m^2 - 1) \frac{\sin(k\hat{r}_m)}{k\hat{r}_m} + \cos\left(k\hat{r}_m\right) \right] P_{\zeta}(k,\eta) = 0}$$

3. The shape parameter: compute the corresponding shape parameter α of the collapsing perturbation, including the correction from the non linear effects, by solving the following equation

$$\mathbf{E}^{F(\alpha)\left[1+F(\alpha)\right]\alpha} = -\frac{1}{2} \left[1 + \hat{r}_m \frac{\int dkk^4 \cos\left(k\hat{r}_m\right) P_{\zeta}(k,\eta)}{\int dkk^3 \sin\left(k\hat{r}_m\right) P_{\zeta}(k,\eta)}\right]$$

$$F(\alpha) = \sqrt{1 - \frac{2}{5}e^{-1/\alpha}\frac{\alpha^{1-5/2\alpha}}{\Gamma\left(\frac{5}{2\alpha}\right) - \Gamma\left(\frac{5}{2\alpha}, \frac{1}{\alpha}\right)}}.$$

E 4. The threshold δ_c : compute the threshold as function of α , fitting the numerical simulations, at superhorizon scales, making a linear extrapolation at horizon crossing $(aHr_m = 1)$.

$$\delta_c \simeq \begin{cases} \alpha^{0.047} - 0.50 & 0.1 \lesssim \alpha \lesssim 7 \\ \alpha^{0.035} - 0.475 & 7 \lesssim \alpha \lesssim 13 \\ \alpha^{0.026} - 0.45 & 13 \lesssim \alpha \lesssim 30 \end{cases}$$

PBH threshold

• IM, De Luca, Franciolini, Riotto - PRD (2021)

$$\delta_c \simeq \begin{cases} \alpha^{0.047} - 0.50 & 0.1 \lesssim \alpha \lesssim 7 \\ \alpha^{0.035} - 0.475 & 7 \lesssim \alpha \lesssim 13 \\ \alpha^{0.026} - 0.45 & 13 \lesssim \alpha \lesssim 30 \end{cases}$$

$$\delta_m = \frac{4}{3} \Phi_m \left(1 - \frac{1}{2} \Phi_m \right) = \delta_G \left(1 - \frac{3}{8} \delta_G \right)$$

PBH Abundance (Peak Theory)

C.Germani, IM - PRL (2019)

• PDF of δ follows a Gaussian distribution:

$$P(\delta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\delta^2}{2\sigma^2}\right)$$

$$\sigma^2 = \langle \delta^2 \rangle = \int_0^\infty \frac{dk}{k} \mathcal{P}_\delta(k, r_m) = \left(\frac{2}{3}\right)^4 \int_0^\infty \frac{dk}{k} (kr_m)^4 T^2(k, r_m) W^2(k, r_m) \mathcal{P}_\zeta(k)$$

$$\beta_f \simeq \sqrt{\frac{2}{\pi}} \mathcal{K} \left(\frac{k_*}{a_m H_m}\right)^3 \sigma^{\gamma} \nu_c^{1-\gamma} \gamma^{\gamma+1/2} e^{-\frac{\nu_c^2}{2}} \qquad \nu_c \equiv \frac{\delta_c}{\sigma}$$

• If
$$M_{PBH} \sim 10^{16} g$$
 are Dark Matter $\Rightarrow \beta_f \simeq 10^{-8} \sqrt{\frac{M_{PBH}}{M_{\odot}}} \simeq 10^{-16}$

- Narrow peak: $\frac{k_*}{\sigma} \gg 1 \Rightarrow \nu_c \simeq 0.22 \sqrt{\frac{k_*}{\sigma \mathcal{P}_0}} \Rightarrow \mathcal{P}_0 \sim 7 \times 10^{-4} \frac{k_*}{\sigma} \gg 10^{-3}$
- Broad peak: $\frac{k_*}{\sigma} \ll 1 \Rightarrow \nu_c \simeq 0.46 (\mathcal{P}_0)^{-1/2} \Rightarrow \mathcal{P}_0 \sim 3 \times 10^{-3}$

• Non linear effects: $\delta = \delta_G \left[1 - \frac{3}{8} \delta_G \right] \Rightarrow 1.5 \lesssim \frac{\mathcal{P}_{0_{NL}}}{\mathcal{P}_{0_L}} = \frac{16 \left(1 - \sqrt{1 - \frac{3}{2} \delta_C} \right)^2}{9 \delta_C^2} \lesssim 4$

S.Young, IM, C.Byrnes JCAP (2019)

De Luca, Franciolini, Kebagias, Peloso, Riotto and Unal (2019)

Equation of State of the Early Universe

The easy Universe goes through 3 main transitions before matter-radiation equality:

PBH Threshold during the QCD

Depending on the shape, the threshold for PBH formation during the QCD phase transition is reduced about 10% around the minimum of w(T).

Significant enhancement of PBH formation around the solar mass scale: abundance increased of about O(3) with respect radiation!

Scale invariant Power Spectrum

$$P_{\zeta}(k) = A \left(k/k_{\min} \right)^{n_s - 1} \Theta(k - k_{\min}) \Theta(k_{\max} - k)$$

$$n_s - \text{spectrum tilt}$$

$$k_{\max}/k_{\min} - \text{cut-off scale}$$

PBH scaling law during the QCD

IM, K. Jedamzik, Sam Young - arXiv:2303.07980

PBH mass function during the QCD

Mass Function ψ (mPBH): fraction of PBHs with mass in the infinitesimal interval of MPBH

IM, K. Jedamzik, Sam Young - arXiv:2303.07980

PBH mass function during the QCD: shape/tilt dependence

- Given the PBH abundance, the shape does not play a significant role on the mass function (attractor solution)!
- The tilt of the power spectrum does not affect the peak of the mass function.

IM, K. Jedamzik, Sam Young - arXiv:2303.07980

GWs from PBH mergers

G. Franciolini, IM, P.Pani, A urbano - PRD (2022)

- Making **Bayesian inference analysis** we found that a <u>sub-population of PBHs is</u> <u>compatible with the LVK catalog</u>.
- PBHs give a natural explanation for the events in with BH mass gap: in particular GW190814 falling within the lower mass gap (predictions for O4 and O5).

GW event	PBH prob. [%]	$m_1[M_\odot]$	$m_2[M_\odot]$
GW151012	1.2	$23.2^{+14.9}_{-5.5}$	$13.6^{+4.1}_{-4.8}$
GW190412	25.4	$30.1^{+4.7}_{-5.1}$	$8.3^{+1.6}_{-0.9}$
$GW190512_180714$	1.6	$23.3\substack{+5.3 \\ -5.8}$	$12.6\substack{+3.6 \\ -2.5}$
$GW190519_153544$	1.5	$66.0\substack{+10.7\\-12.0}$	$40.5\substack{+11.0 \\ -11.1}$
GW190521	7.2	$95.3\substack{+28.7 \\ -18.9}$	$69.0\substack{+22.7\\-23.1}$
$GW190602_175927$	2.7	$69.1\substack{+15.7 \\ -13.0}$	$47.8^{+14.3}_{-17.4}$
$GW190701_203306$	1.4	$53.9\substack{+11.8 \\ -8.0}$	$40.8^{+8.7}_{-12.0}$
$GW190706_222641$	1.3	$67.0\substack{+14.6 \\ -16.2}$	$38.2\substack{+14.6 \\ -13.3}$
$GW190828_065509$	2.8	$24.1\substack{+7.0 \\ -7.2}$	$10.2\substack{+3.6 \\ -2.1}$
$GW190924_021846$	40.3	$8.9^{+7.0}_{-2.0}$	$5.0^{+1.4}_{-1.9}$
GW191109_010717	2.9	65^{+11}_{-11}	47^{+15}_{-13}
GW191129_134029	1.2	$10.7^{+4.1}_{-2.1}$	$6.7^{+1.5}_{-1.7}$
GW190425	2.8	$2.0\substack{+0.6 \\ -0.3}$	$1.4^{+0.3}_{-0.3}$
$GW190426_152155$	1.2	$5.7^{+3.9}_{-2.3}$	$1.5\substack{+0.8 \\ -0.5}$
GW190814	29.1	$23.2^{+1.1}_{-1.0}$	$2.59\substack{+0.08 \\ -0.09}$
$GW190917_114630$	3.0	$9.3\substack{+3.4\\-4.4}$	$2.1^{+1.5}_{-0.5}$
$GW200105_162426$	3.6	$8.9^{+1.2}_{-1.5}$	$1.9\substack{+0.3 \\ -0.2}$
$GW200115_042309$	1.2	$5.9^{+2.0}_{-2.5}$	$1.44\substack{+0.85\\-0.29}$

PBH - DM constraints

G. Franciolini, IM, P.Pani, A urbano - PRD (2022)

Conclusions

- The non linear threshold for PBH and the mass function could be fully computed from the shape of the power spectrum of cosmological perturbations, making relativistic numerical simulations.
- A softening of the equation of state (QCD) significantly enhances the formation of PBHs, with a mass distribution peaked between 1 and 2 solar masses (the range of heavy NSs and light BHs).
- This could gives a sub-population of BH mergers compatible with the LVK catalog, explaining mass gap events as GW190814.
- Our analysis predicts a **constraint on the abundance of DM in PBHs formed during the QCD (up to 0.1%)**, compatible with the current observational constraints.
- A large enough feature of the power spectrum could account for all dark matter in PBHs in the asteroidal mass range (USR inflation models).

Workshop (Rome 11-13 December): Future Perspectives on PBHs

- 2.5 days in the Botanic Garden of Trastevere (Rome downtown)
- 9 Invited talks, 5 contributed talks for young researches, 3 moderated discussions.
- Special Event 12 December: "The Nature of Time and Mach Principle"

https://agenda.infn.it/event/35854/

Istituto Nazionale di Fisica Nucleare

Power Spectrum:

Gaussian:
$$\mathcal{P}_{\zeta}(k) = \mathcal{P}_0 \exp\left[-(k-k_*)^2/2\sigma^2\right]$$

Lognormal:
$$\mathcal{P}_{\zeta}(k) = \mathcal{P}_0 \exp\left[-\ln^2\left(k/k_*\right)/2\sigma^2\right]$$

PBH formation during the QCD

IM, K. Jedamzik, Sam Young - arXiv:2303.07980

PBHs and Dark Matter (asteroidal mass)

PBH - DM constraints (PTA / NANOGrav)

Relativistic Hydrodynamics in spherical symmetry

$$ds^2 = -A^2(t, r)dt^2 + B^2(t, r)dr^2 + R^2(t, r)d\Omega^2$$
 - comoving (cosmic time) slicing

$$\begin{split} U &\equiv D_t R \equiv \left. \frac{1}{A} \frac{\partial R}{\partial t} \right|_r \qquad \Gamma \equiv D_r R \equiv \left. \frac{1}{B} \frac{\partial R}{\partial r} \right|_t \\ D_t U &= -\frac{\Gamma}{\rho + p_r} \left[D_r p_r + \frac{2\Gamma}{R} \left(p_r - p_t \right) \right] - \frac{M}{R^2} - 4\pi R p_r \\ \frac{D_t \rho_0}{\rho_0} &= -\frac{1}{R^2 \Gamma} D_r \left(R^2 U \right) \\ \frac{D_t \rho}{\rho + p_r} &= \frac{D_t \rho_0}{\rho_0} + \frac{2U}{R} \frac{p_r - p_t}{\rho + p_r} \\ \frac{D_r A}{A} &= -\frac{1}{\rho + p_r} \left[D_r p_r + \frac{2\Gamma}{R} \left(p_r - p_t \right) \right] \\ D_r M &= 4\pi R^2 \Gamma \rho \\ D_t M &= -4\pi R^2 U p_r \\ D_t \Gamma &= -\frac{U}{\rho + p_r} \left[D_r p_r + \frac{2\Gamma}{R} \left(p_r - p_t \right) \right] \\ \Gamma^2 &= 1 + U^2 - \frac{2M}{R} \end{split}$$

Numerical technique

The diagram show two different time foliation (space-time slicing):

1. comoving (cosmic time) - solid line

2. null (observer time) - dashed line

The initial conditions are specified on the cosmic time slicing. To follow the full evolution, and <u>avoid the</u> <u>central singularity</u>, one can transform the calculation into the observer time slicing, where <u>the formation of the</u> <u>apparent horizon formation is</u> <u>infinitely redshifted</u>. This allow to fully compute the final mass of the BH.

The code is using AMR.

Scaling law (critical collapse)

Non linear horizon crossing

Comparison with EBC

- Our (AMR) numerical scheme gives a larger variation of the threshold (about 25%).
- Scaling law was not considered: broader mass function profile.
- Press-Schecther or Peak Theory? Only perk theory allow to have a proper commutation of the abundance, and not overestimate PBHs

