

Multi-TeV Dark Matter density in the inner Milky Way halo: spectral and dynamical constraints arXiv 2307.06823

Jaume Zuriaga-Puig, Viviana Gammaldi, Daniele Gaggero, Thomas Lacroix, Miguel Ángel Sánchez-Conde

PhD supervisors: Viviana Gammaldi, Miguel Ángel Sánchez-Conde Instituto de Física Teórica UAM/CSIC

Cosmology 2023 in Miramare - 29 August, 2023

Motivation: TeV cut-off detected by HESS

Previous works on the DM hypothesis:

- dark matter candidates
- signal

• A. V. Belikov et al., Phys.Rev. D (2012): Study of the gamma-ray spectrum from the Galactic Center in view of multi-TeV

• J. A. R. Cembranos et al., JCAP (2013): Spectral study of the HESS J1745-290 gamma-ray source as a dark matter

Outline

- WIMPS indirect detection with gamma rays
- Galactic Centre observed by HESS
 - 5 Regions Of Interest in the GC
- Gamma-ray spectral analysis components
 - 5 regions background model
 - DM density profile
- Gamma-ray spectral results:
 - 5 regions J-Factors
- Constraints on the DM density profile:
 - Simulations & dynamical observations (external DM profile)
 - S2 star orbit (innermost DM profile)
- Conclusions

Galactic Center observed by HESS

• Very Inner Region (VIR) HESS J1745-290: $\theta < 0.11^{\circ}$

H.E.S.S. collaboration, Nature (2016)

- HESS Ridge: $|b| < 0.3^{\circ}, |l| < 1.0^{\circ}$ H.E.S.S. collaboration, A&A (2018)
- HESS Diffuse: $0.15^{\circ} < \theta < 0.45^{\circ}$ H.E.S.S. collaboration, Nature (2016)
- HESS Halo: $\theta < 1.0^{\circ}, |b| > 0.3^{\circ}$ H.E.S.S. collaboration, Phys.Rev.Lett. (2011) H.E.S.S. collaboration, Phys.Rev.Lett. (2016)
- HESS Inner Galaxy Survey (IGS): $0.5^{\circ} < \theta < 3.0^{\circ}$ H.E.S.S. collaboration, Phys.Rev.Lett. (2022)

This work, J. Zuriaga-Puig et al. arXiv: 2307.06823

Indirect Detection WIMPS: Gamma Rays

produces gamma-rays

Information about the DM density profile

Analysis component

This work, J. Zuriaga-Puig et al.

	DM	density	profile
--	----	---------	---------

	o_1 , $(r$) — _		$ ho_s$	
	Phalo(1	$\left(\frac{\beta-\gamma}{\alpha}\right) \frac{\beta-\gamma}{\alpha}$			
	NFW: (γ)	$, \alpha, \beta)$	= (1	,1,3)	
Profile	γ	α	β	$r_s (\mathrm{kpc})$	$ ho_{\odot}(\text{GeVci}$
DM-only	1	1	3	21.5	0.28
GARR-I	0.59	1	2.70	2.3	0.35
GARR-I300	1.05	1	2.79	4.6	0.35
GARR-II300	0.02	0.42	3.39	2.5	0.35
ERIS	1	1	3	10.9	0.36
MOLL	8×10^{-9}	2.89	2.54	4.4	0.31
EAGLE	1.38	1	3	31.2	0.35
McMillan17	0-1.5	1	3	6.8-59.9	0.33-0.
Benito20	0.1-1.3	1	3	7.0-40.0	0.41-0.
	1	ſ		$l(\hat{\theta})_{\max}$	
$\langle J \rangle_{\Delta s}$	$\Omega = \frac{1}{\Lambda \Omega}$		$\mathrm{d}\Omega$		$\rho^2[r(l)]$

 $\Delta\Omega J_{\Delta\Omega}$

 J_0

Analysis component: Background Model DRAGON

- A source of uncertainty is the astrophysical background model: diffuse emission and several point sources
- The diffuse emission is due to the presence of a charged CR sea confined in the galaxy by the turbulent magnetic field
- This sea of CR interact with the interstellar gas and low-energy photons emitting gamma-ray flux up to TeV scale
- Main interactions: synchrotron, bremsstrahlung, Inverse Compton and neutral pion decay
- We use DRAGON & HERMES to model this emission, where the spectral shape is completely defined in each region

$$\frac{d\Phi_{\text{Bg}}}{dE} = B^2 \frac{d\Phi_{\text{DRAGON}}}{dE}$$

factor left as a free parameter

 B^2 is an $\mathcal{O}(1)$ normalizing

DRAGON

- C. Evoli et al., JCAP (2008)
- C. Evoli et al., JCAP (2017)
- C. Evoli et al., JCAP (2018) HERMES
- A. Dundovic et al., A&A (2021)

Analysis: VIR & Ridge

Parameters	VIR	Ridge
$m_{\rm DM} \ ({\rm TeV})$	36^{+8}_{-6}	
$B^2 ({\rm cm}^2 {\rm s}^{-1})$	$7.3^{+0.8}_{-0.7}$	$0.30^{+0.2}_{-0.1}$
$\langle J \rangle_{\Delta\Omega} \; (\text{GeV}^2 \text{cm}^{-5})$	$2.4^{+0.7}_{-0.7} \times 10^{28}$	$2.5^{+0.8}_{-1.0} \times 10^{27}$
$\langle J \rangle_{\Delta\Omega} / J_{\rm DM-only}$	1000^{-300}_{+300}	1000^{+300}_{-400}
$\chi^2 \ / \ { m ddof}$	0.96	1.01
$\Delta \Omega (\mathrm{sr})$	1.16×10^{-5}	3.26×10^{-4}

Analysis: Diffuse

Parameters	VIR	Ridge	
$m_{\rm DM} ({\rm TeV})$	36^{+8}_{-6}		
$B^2 \; (\mathrm{cm}^2 \mathrm{s}^{-1})$	$7.3^{+0.8}_{-0.7}$	$0.30^{+0.2}_{-0.1}$	
$\langle J \rangle_{\Delta\Omega} \; (\text{GeV}^2 \text{cm}^{-5})$	$2.4^{+0.7}_{-0.7} \times 10^{28}$	$2.5^{+0.8}_{-1.0} \times 10^{27}$	G
$\langle J \rangle_{\Delta\Omega} / J_{\rm DM-only}$	1000^{-300}_{+300}	1000^{+300}_{-400}	
$\chi^2 \ / \ { m ddof}$	0.96	1.01	
$\Delta \Omega (\mathrm{sr})$	1.16×10^{-5}	3.26×10^{-4}	

5×10^{27} Diffuse 2σ Diffuse χ^2_{min} 4 Ridge best fit ╋ -5)CIM 3 · $(GeV^2$ + 2 $U \nabla \langle f \rangle$ 0.20.40.6 0.8 1.00.0 $B^2 (cm^{-2} s^{-1})$ Diffuse Halo Ridge Diffuse VIR atitude: b (deg) 0.5 $.7^{+0.3}_{-0.6}$ \bigcirc $0.7^{+33.0}_{-9.7} \times 10^{26}$ 0.0Galactic • 5.0– 200^{+800}_{-200} 0.89 -1.0 1.41×10^{-4} 0.5 0.0 -0.5 Galactic longitude: l (deg) 1.0

This work, J. Zuriaga-Puig et al.

Analysis: Halo

Parameters	Halo	IGS
$m_{\rm DM} \ ({\rm TeV})$		
$B_{\rm UL}^2 ({\rm cm}^2 {\rm s}^{-1})$	0.13	0.02
$\langle J \rangle_{\Delta\Omega}^{\rm UL} \; ({\rm GeV^2 cm^{-5}})$	2.5×10^{26}	1.7×10^{25}
$\Delta \Omega (\mathrm{sr})$	5.97×10^{-4}	6.38×10^{-3}

H.E.S.S. collaboration, Phys.Rev.Lett. (2011)

$$\langle \sigma v \rangle = 2.2 \times 10^{-26} \,\mathrm{cm}^3$$

This work, J. Zuriaga-Puig et al.

Analysis: IGS

Parameters	Halo	IGS
$m_{\rm DM} \ ({\rm TeV})$		
$B_{\rm UL}^2 \; ({\rm cm}^2 {\rm s}^{-1})$	0.13	0.02
$\langle J \rangle_{\Delta\Omega}^{\rm UL} \; ({\rm GeV^2 cm^{-5}})$	2.5×10^{26}	1.7×10^{25}
$\Delta\Omega~(\mathrm{sr})$	5.97×10^{-4}	6.38×10^{-3}

H.E.S.S. collaboration, Phys.Rev.Lett. (2022)

 $\langle \sigma v \rangle = 2.2 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$

12

Spectral analysis results: J-Factors

 $\rho^2[r(l)]dl(\hat{\theta})$

Outline

- WIMPS indirect detection with gamma rays
- Galactic Centre observed by HESS
 - 5 Regions Of Interest in the GC
- Gamma-ray spectral analysis components
 - 5 regions background model
 - DM density profile
- Gamma-ray spectral results:
 - 5 regions J-Factors
- Constraints of the DM density profile:
 - Simulations & dynamical observations (external DM profile)
 - S2 star orbit (innermost DM profile)
- Conclusions

DM Density Profile

- We need DM density profiles well described in order to compute the J-Factors
- We will use different models coming from simulations and observations
- Given the uncertainties in the GC: we use a wide range of models

Profile	γ	α	β	$r_s (\mathrm{kpc})$	$ ho_{\odot}(\mathrm{Ge}$
DM-only	1	1	3	21.5	0
GARR-I	0.59	1	2.70	2.3	0
GARR-I300	1.05	1	2.79	4.6	0
GARR-II300	0.02	0.42	3.39	2.5	0
ERIS	1	1	3	10.9	0
MOLL	8×10^{-9}	2.89	2.54	4.4	0
EAGLE	1.38	1	3	31.2	0
McMillan17	0-1.5	1	3	6.8-59.9	0.33
Benito20	0.1-1.3	1	3	7.0-40.0	0.41

This work, J. Zuriaga-Puig et al.

15

Generalized NFW

Extrapolation of the external profile to

Inner DM spike?

This work, J. Zuriaga-Puig et al.

Profile	$\gamma_{ m sp}$	$R_{\rm sp} ({\rm pc})$	$\gamma_{ m inst}$	$R_{\rm inst}~({\rm pc})$
DM-only	2.33	23.5	1.33	16.9
GARR-I	2.29	16.1	1.23	13.2
GARR-I300	2.34	10.2	1.35	8.0
GARR-II300	2.25	2.8	1.14	19.0
ERIS	2.33	16.2	1.33	11.6
MOLL	2.25	0.03	1.12	88.0
EAGLE	2.38	6.8	1.48	72.6
McMillan17	2.25 - 2.40	3.8 - 47.6	1.12 - 1.41	$80.5 - 11.7^{\circ}$
Benito20	2.26 - 2.37	6.9 - 61.3	1.14 - 1.44	$98.4 - 10.1^{\circ}$

In order to define the inner profile, we can take different approaches:

- Generalized NFW (no modification of the profile)
- Adiabatic Spike from the BH Gondolo & Silk Phys.Rev.Lett. (1999) L.Sadeghian et al. Phys.Rev. D (2013)
- Adiabatic Spike + Stars interactions E. Vasiliev et al. Phys.Rev. D (2008) G. Bertone et al. Modern Phys. Letters (2005)
- Extreme case of the Instant Spike P. Ullio et al. Phys.Rev. D (2001)

Adiabatic spike

Assuming:

- Adiabatic growth of the SMBH Sgr. A* No major mergers during Central position of Sgr. A* during its
- the last $t_{BH} = 10$ Gyr formation

Spike-stars

VIR

Ridge

- Adiabatic spike
- Heating of DM particles

Instant spike

Extreme case of instantaneous **Assuming:** formation of the SMBH Sgr. A*

20

Best Profiles

Best profiles obtained in each case Excluded region: the computed J-factors \bullet are greater than the fitted values

S2 star: Dynamical constraints

From the S2 orbit, we can set constraints on the extended mass within the orbit

This analysis is independent on a particular DM theory or assumptions

GRAVITY Collaboration, A&A (2020)

Dynamical constraints: S2 Star orbit Adiabatic spike constraints

Update of T. Lacroix, A&A (2018)

Dynamical constraints: enclosed mass

Adiabatic spike

Stars-spike

This work, J. Zuriaga-Puig et al.

Conclusions

Gamma Rays:

- greater than the fitted values
- dimensions $\theta_{spike} \lesssim \theta_{Diff} = (0.15^{\circ}, 0.45^{\circ})$ Future analysis is required

Final constraints:

Profile	VIR	Ridge	Diffuse	S2-star
Gen. NFW	Excluded $\gamma \gtrsim 1.36 \pm 0.02$	Allowed	Allowed	Allowed
Adiabatic	Excluded	Allowed	Allowed	Excluded $\gamma \gtrsim 0.6 \pm 0.2$
Star-spike	Excluded $\gamma \gtrsim 0.76^{+0.04}_{-0.07}$	Allowed	Allowed	Allowed
Instant	Excluded $\gamma \gtrsim 1.21^{+0.02}_{-0.01}$	Allowed	Allowed	Allowed

• Fitted value TeV WIMP: $m_{DM} = 36^{+8}_{-6}$ TeV with $\langle \sigma v \rangle = 2.2 \times 10^{-26}$ cm³ s⁻¹

Conservative approach: we can exclude all the profiles with a J-Factor

• Diffuse region: If a DM spike exists in the GC, it is required to have angular

Thank you for your time!

McMillan17 & Benito20 **McMillan17** [**MNRAS**(2017)]

- Modeling of the bulge, the stellar disc, the gas disc and the DM halo
- HMSFR are expected to be in circular orbits

Benito20 [Physics of the Dark Universe (2021) 2009.13523_v3]

- Modeling of the bulge, the stellar disc, the gas disc and the DM halo
- Rotation curve analysis: kinematics of gas, masers and stars

• Object of observation: maser sources, associated with high-mass star forming regions (HMSFR)

Parameters of the DM Density Profile

$$\rho_{halo}(r) = \frac{\rho_s}{\left(\frac{r}{r_s}\right)^{\gamma} \left(1 + \left(\frac{r}{r_s}\right)^{\alpha}\right)^{\frac{\beta - \gamma}{\alpha}}}$$

NFW: $(\gamma, \alpha, \beta) = (1, 1, 3)$

Parameters of the DM Density Profile

$$\rho_{halo}(r) = \frac{\rho_s}{\left(\frac{r}{r_s}\right)^{\gamma} \left(1 + \left(\frac{r}{r_s}\right)^{\alpha}\right)^{\frac{\beta - \gamma}{\alpha}}}$$

Profile	γ	$\gamma_{ m sp}$	$R_{\rm sp} ({\rm pc})$	$\theta_{\rm sp} \ ({\rm deg})$	$\gamma_{ m inst}$	$R_{\rm inst}~({\rm pc})$	$\theta_{\rm inst} \ ({\rm deg})$
DM-only	1	2.33	23.5	0.17	1.33	16.9	0.12
GARR-I	0.59	2.29	16.1	0.11	1.23	13.2	0.09
GARR-I300	1.05	2.34	10.2	0.07	1.35	8.0	0.06
GARR-II300	0.02	2.25	2.8	0.02	1.14	19.0	0.13
ERIS	1	2.33	16.2	0.1	1.33	11.6	0.08
MOLL	8×10^{-9}	2.25	0.03	0.0002	1.12	88.0	0.62
EAGLE	1.38	2.38	6.8	0.05	1.48	72.6	0.51
McMillan17	0 - 1.5	2.25 - 2.40	3.8 - 47.6	0.03 - 0.33	1.12 - 1.41	80.5 - 11.7*	0.56 - 0.08*
Benito20	0.1 - 1.3	2.26 - 2.37	6.9 - 61.3	0.05 - 0.43	1.14 - 1.44	98.4 - 10.1*	0.70 - 0.07*

NFW: $(\gamma, \alpha, \beta) = (1, 1, 3)$

Adiabatic spike Assuming:

- Adiabatic growth of the SMBH Sgr. A*
- Central position of Sgr. A* during its formation
- No major mergers during the last $t_{BH} = 10$ Gyr

Gondolo & Silk Phys.Rev.Lett. (1999) L.Sadeghian et al. Phys.Rev. D (2013)

 Central slope (non circular orbits of the DM particles):

$$\rho_{sat}(r) = m_{DM} / (t_{BH} \langle \sigma v \rangle) (\frac{r}{R_{sat}})^{-1}$$

- Spike ($\gamma_{sp} \sim 2,25 2,5$): $\rho_{sp(r)} = \rho_{sp} (1 - 2\frac{R_S}{r})^3 (\frac{r}{R_{sp}})^{-\gamma_{sp}}$
- External profile:

$$\rho_{halo}(r) = \frac{\rho_s}{\left(\frac{r}{r_s}\right)^{\gamma} \left(1 + \left(\frac{r}{r_s}\right)^{\alpha}\right)^{\frac{\beta - \gamma}{\alpha}}}$$

Stars-spike

Assuming:

- Adiabatic spike
- Scattering + heating of DM particles off stars

This results on the flattening of the spike to $\gamma_{star} = 1.5$ at r < 2 pc

E. Vasiliev et al. Phys.Rev. D (2008) G. Bertone et al. Modern Phys. Letters (2005)

 Central slope (non circular orbits of the DM particles):

$$\rho_{sat}(r) = m_{DM} / (t_{BH} \langle \sigma v \rangle) (\frac{r}{R_{sat}})^{-1/2}$$

- Spike ($\gamma_{sp} \sim 2,25 2,5$): $\rho_{sp(r)} = \rho_{sp} (1 - 2\frac{R_S}{r})^3 (\frac{r}{R_{sp}})^{-\gamma_{sp}}$
- External profile:

$$\rho_{halo}(r) = \frac{\rho_s}{\left(\frac{r}{r_s}\right)^{\gamma} \left(1 + \left(\frac{r}{r_s}\right)^{\alpha}\right)^{\frac{\beta - \gamma}{\alpha}}}$$

Instant spike **Assuming:**

Extreme case of the instantaneous growth of Sgr. A*

P. Ullio et al. Phys.Rev. D (2001)

 Central slope (non circular orbits of the DM particles):

$$\rho_{sat}(r) = m_{DM} / (t_{BH} \langle \sigma v \rangle) (\frac{r}{R_{sat}})^{-1/2}$$

 Instantaneous spike $(\gamma_{ints} \sim 4/3, R_{inst} \sim 10 - 90 \text{ pc}):$ $\rho_{inst}(r) = \rho_{halo}(R_{inst})(\frac{r}{R_{inst}})^{-\gamma_{inst}}$

• External profile:

$$\rho_{halo}(r) = \frac{\rho_s}{\left(\frac{r}{r_s}\right)^{\gamma} \left(1 + \left(\frac{r}{r_s}\right)^{\alpha}\right)^{\frac{\beta - \gamma}{\alpha}}}$$

More dynamical constraints

DRAGON model $\frac{d\Phi_{\text{Bg}}}{dE} = B^2 \frac{d\Phi_{\text{DRAGON}}}{dE}$

- Universe (2021) for a review)

 B^2 is an $\mathcal{O}(1)$ normalizing factor left as a free parameter

 The reason of this renormalization is due to the poor knowledge of the conversion factor between the CO emissivity and the molecular gas column density (see L. Tibaldo et al.,

• This factor scales linearly with the diffuse emission, hence we leave B as a free parameter

• The spectral shape is given by DRAGON, and we have computed the flux in each region

DM density profiles examples

35

VIR HESS J1745-290

HESS collaboration, A&A (2009)

Expected gamma-rays background events computed as an ON-OFF analysis

Comparison with other observations

