

Detecting and characterizing dark matter sub-halos with the Cherenkov Telescope Array

Veronika Vodeb, on behalf of Christopher Eckner, Tejas Satheesh, Francesca Calore, Gabrijela Zaharijas, Pierrick Martin, and the CTA Consortium

Affiliations: UNG, LAPTH, and IRAP

Cta

Outline

• Introduction

- Cherenkov Telescope Array
- Dark matter (DM) sub-halos
- Motivation for our study

• Sub-halo modelling and data simulation

- Sub-halo modelling
- Simulating Galactic Plane Survey (GPS) observations
- CTA's GPS sensitivity to DM sub-halos
 - Flux sensitivity to sub-halos
 - Accessible σv for varying DM masses
- Discrimination between sources
 - Angular decomposition of a DM sub-halo profile
 - Source discrimination
- Galactic sub-halo population study
 - Angular decomposition of a DM sub-halo profile
- Conclusions

About Cherenkov Telescope Array

- CTA is an Imaging Atmospheric Cherenkov Telescope, detecting gamma rays in the energy range 20 GeV — 300 TeV
- CTA will
 - Cover the entire sky (IACT arrays in Northern and Southern Hemispheres)
 - Improve the sensitivity of current IACTs and boost detection area
 - Improve angular resolution and field of view —> better capability to image extended sources
 - Enhance surveying and monitoring capabilities
 - Large surveys of the sky are part of the Key Science Projects of CTA, e.g.:
 - Extragalactic survey (1/4 of the sky)
 - Galactic Plane Survey (GPS)

Dark matter (DM) sub-halos

- DM sub-halo is a gravitationally bound clump of dark matter that exists within a larger dark matter halo
- The concordance model of cosmology ΛCDM predicts bottom-up structure formation in the universe.
- Massive objects like galaxies are the results of mergers of less massive, virialised objects.

Galactic dark matter halo Dark matter sub-halo Dark matter sub-sub-halo Dark matter sub-sub-halo

Motivation for our study

- Sub-halos of masses below ~ $10^8\,\text{M}_\odot$ do not accumulate a sizeable amount of baryons to initiate star formation
- Dim sources of conventional electromagnetic emission, better indirect DM detection prospects
- Previous works on CTA sensitivity to DM subhalos
 - Javier Coronado-Blázquez et al. 2021
 - Detectability of dark subhalos considering different observational scenarios for serendipitous detection
- This work
 - Adopting a similar approach as in Christopher Eckner et al.
 2023
 - Assessing the sensitivity of CTA's Galactic Plane Survey to extended sources, in particular to pulsar halos
 - Assessing the sensitivity to DM subhalos considering the planned Galactic Plane Survey observations
 - Assessing the discrimination power from known astro sources

Springel et al., MNRAS 391 (2008

Sub-halo modelling and data simulations

Single sub-halo and population model

- Spectral and spatial model
 - We assume the thermal WIMP DM, with mass 1 TeV annihilating into b-quarks
 - We employ the spectral model from M. Cirelli et al. (2011)
 - Navarro-Frenk-White DM profile with different parameterisations
- Modelling the Galactic sub-halo population
 - Modeling based on work by F. Calore et al. (2019) and M. Hütten et al. (2019)
 - M. Stref & J. Lavalle (2017)
 - Two variants of a sub-halo population model (based on uncertainties caused by the tidal effects, i.e. tidal vs. scale radius):

Simulating Galactic Plane Survey observations

• Pointing strategy

- Two-row observation strategy
- ~0.5 hours per pointing
- Varying density of pointings resulting in varying exposure for different regions
- A realistic pointing schedule adopted from L. Tibaldo (<u>https://github.com/cta-observatory/cta-gps-simulation-paper</u>)
- Tools
 - gammapy (0.18.2) and CTA provided IRFs (prod5-v0.1)
- Template fitting analysis: Source (sub-halo) + Instrumental background (CR)
 + IE model (De la Torre Luque, 2022)

CTA's GPS sensitivity to DM sub-halos

Flux sensitivity to brightest subhalo

$\sigma v =$	3.	10^{-26}	$cm^3 s^{-1}$
· ·	-		UU

ub-halo mass	Distance	r_s	J-factor	$r_s/{\rm distance}$	Extension
$0^8 M_{\odot}$	1.0 kpc	1.36 kpc	$1.5508 \ \cdot 10^{21} \ {\rm GeV^2 \ cm^{-5}}$	1.360	53.7°
$0^8 M_{\odot}$	$5.0 \ \mathrm{kpc}$	1.36 kpc	$1.7582~{\cdot}10^{20}~{\rm GeV^2~cm^{-5}}$	0.272	15.2°
$0^8 M_{\odot}$	$10.0 \ \mathrm{kpc}$	1.36 kpc	$5.6194~{\cdot}10^{19}~{\rm GeV^2~cm^{-5}}$	0.136	7.7°
$0^8 M_{\odot}$	$30.0 \ \mathrm{kpc}$	1.36 kpc	$7.3086~{\cdot}10^{18}~{\rm GeV^2~cm^{-5}}$	0.045	2.6°
$0^8 M_{\odot}$	1.0 kpc	1.50 kpc	$9.7468 \ \cdot 10^{18} \ {\rm GeV^2} \ {\rm cm^{-5}}$	1.50	56.3°
$0^8 M_{\odot}$	1.0 kpc	$1.20 \rm \ kpc$	$5.0527~{\cdot}10^{18}~{\rm GeV^2~cm^{-5}}$	1.20	50.2°
$0^8 M_{\odot}$	$1.0 \ \mathrm{kpc}$	0.90 kpc	$2.1534~{\cdot}10^{18}~{\rm GeV^2~cm^{-5}}$	0.90	42.0°
$0^8 M_{\odot}$	$1.0 \ \mathrm{kpc}$	$0.65 \ \mathrm{kpc}$	$8.1656~{\cdot}10^{17}~{\rm GeV^2~cm^{-5}}$	0.65	33.0°

DM mass vs. σv for brightest subhalo

Discrimination between DM sub-halos and known astrophysical sources

Source discrimination

- How well can potentially detected DM sub-halos be distinguished from point-like sources or other extended sources?
- The analysis:
 - Inject DM signal at fixed cross-section value into mock data
 - Fit a nested model of DM sub-halo + alternative spatial model
 - What is the cross-section at which the DM sub-halo is significantly preferred?

Angular decomposition of the SH profile

 σv necessary to guarantee a decomposition of the detected DM subhalo signal into at least two significant annuli up to 30 pc from the subhalo's center

Sub-halo:

 $(l, b) = (5.0^{\circ}, 0.0^{\circ})$ d = 1 kpc NFW profile $r_s = 1.36$ kpc

Discrimination from other novel source classes like pulsar halos (model from C. Eckner et al., MNRAS 521, 2023)

Galactic sub-halo population study

Integrated sensitivity across the GPS

Fragile model

Number of detected sub-halos vs. σv

Resilient model

Average over all available realisations of subhalo population simulations to infer the number of detections in the GPS for a certain cross-section.

Detection of least one sub-halo for either fragile or resilient scenario:

 $(\sigma v)_1 \sim 3 \cdot 10^{-22} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$

Astro vs. DM (preliminary)

18

Comments and conclusions

- CTA's Galactic plane survey will uncover many ۲ extended gamma-ray sources along the Galactic plane, some of which will remain unidentified.
 - The cold dark matter scenario predicts the presence of dark matter subhalos in that ROI.
 - Among unassociated/unidentified point sources there may be SH.
- We quantify how many and under which conditions
 - We show the importance of using realistic SH profiles for the reconstruction of the emissivity profile.
 - A genuine subhalo, once detected, is easily distinguishable from a point-like source or Gaussian profile.
 - σv values in the same ballpark of what other strategies can probe: $\sigma v \sim 10^{-22}$ cm⁻³ s⁻¹ for detection of one, brightest sub-halo.

Acknowledgements:

This research was done with members of the CTA Consortium. This research made use of the CTA instrument response functions provided by the CTA Consortium and Observatory, see https://www.cta-observatory.org/cta-performance-prod3b-v2/ for more details.

We made use of ctools (http://cta.irap.omp.eu/ctools/)