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About Cherenkov Telescope Array

• CTA is an Imaging Atmospheric Cherenkov Telescope, detecting gamma 
rays in the energy range 20 GeV — 300 TeV


• CTA will

– Cover the entire sky (IACT arrays in Northern and Southern Hemispheres)

– Improve the sensitivity of current IACTs and boost detection area

– Improve angular resolution and field of view —> better capability to image extended 

sources

– Enhance surveying and monitoring capabilities

– Large surveys of the sky are part of the Key Science Projects of CTA, e.g.:


– Extragalactic survey (1/4 of the sky)

– Galactic Plane Survey (GPS)
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Dark matter (DM) sub-halos

• DM sub-halo is a gravitationally bound 
clump of dark matter that exists within a 
larger dark matter halo


• The concordance model of cosmology CDM 
predicts bottom-up structure formation in 
the universe.


• Massive objects like galaxies are the results 
of mergers of less massive, virialised objects.


Galactic dark matter halo

Dark matter sub-halo


Dark matter sub-sub-halo

Dark matter sub-sub-sub-halo
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Minimal gravitationally bound dark matter halo

Λ
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• Sub-halos of masses below ~  do not 
accumulate a sizeable amount of baryons to initiate 
star formation


• Dim sources of conventional electromagnetic emission, 
better indirect DM detection prospects


• Previous works on CTA sensitivity to DM subhalos

– Javier Coronado-Blázquez et al. 2021


– Detectability of dark subhalos considering different 
observational scenarios for serendipitous detection


• This work

– Adopting a similar approach as in Christopher Eckner et al. 

2023

– Assessing the sensitivity of CTA’s Galactic Plane Survey 

to extended sources, in particular to pulsar halos

– Assessing the sensitivity to DM subhalos considering the 

planned Galactic Plane Survey observations

– Assessing the discrimination power from known astro sources

108 M⊙

Motivation for our study
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Sub-halo modelling 
and data simulations



Single sub-halo and population model

• Spectral and spatial model

– We assume the thermal WIMP DM, with mass 1 TeV annihilating into b-quarks

– We employ the spectral model from M. Cirelli et al. (2011)

– Navarro-Frenk-White DM profile with different parameterisations


• Modelling the Galactic sub-halo population

– Modeling based on work by F. Calore et al. (2019) and M. Hütten et al. (2019)

– M. Stref & J. Lavalle (2017)


– Two variants of a sub-halo population model (based on uncertainties caused 
by the tidal effects, i.e. tidal vs. scale radius): 

– SL17 fragile: 


– SL17 resilient: 

rt < rs

rt < 10−2 rs
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Simulating Galactic Plane Survey observations

• Pointing strategy

– Two-row observation strategy

– ~0.5 hours per pointing

– Varying density of pointings resulting in varying exposure for different regions

– A realistic pointing schedule adopted from L. Tibaldo (https://github.com/cta-

observatory/cta-gps-simulation-paper)


• Tools

– gammapy (0.18.2) and CTA provided IRFs (prod5-v0.1)


• Template fitting analysis: Source (sub-halo) + Instrumental background (CR) 
+ IE model (De la Torre Luque, 2022) 8

4.99∘ 132.34∘

https://github.com/cta-observatory/cta-gps-simulation-paper
https://github.com/cta-observatory/cta-gps-simulation-paper


CTA’s GPS sensitivity 
to DM sub-halos



Flux sensitivity to brightest subhalo
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σv = 3 ⋅ 10−26 cm3 s−1

Preliminary

Preliminary Preliminary



DM mass vs.  for brightest subhaloσv
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Ann. channel: bb̄

Preliminary Preliminary

Preliminary Preliminary



Discrimination between 
DM sub-halos and 
known astrophysical 
sources



Source discrimination
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• How well can potentially detected DM sub-halos be distinguished from 
point-like sources or other extended sources?


• The analysis:

– Inject DM signal at fixed cross-section value into mock data

– Fit a nested model of DM sub-halo + alternative spatial model

– What is the cross-section at which the DM sub-halo is significantly preferred?

Sub-halo:

NFW profile
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rs = 1.36 kpc
(σ = 0.052∘)
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simple detection

Angular decomposition of the SH profile

• Discrimination from other novel source 
classes like pulsar halos (model from C. 
Eckner et al., MNRAS 521, 2023)
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Preliminary

Preliminary

Sub-halo:

NFW profile

(l, b) = (5.0∘, 0.0∘)
d = 1 kpc

rs = 1.36 kpc

•  necessary to guarantee a 
decomposition of the detected DM subhalo 
signal into at least two significant annuli 
up to 30 pc from the subhalo’s center

σv



Galactic sub-halo 
population study



Integrated sensitivity across the GPS
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Number of detected sub-halos vs. σv
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PreliminaryPreliminary

(σv)1 ∼ 3 ⋅ 10−22cm3 s−1

Resilient model Fragile model

Detection of least one sub-halo for either 
fragile or resilient scenario:

Average over all available realisations of subhalo population simulations to infer the number of 
detections in the GPS for a certain cross-section.



Astro vs. DM (preliminary)
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• CTA’s Galactic plane survey will uncover many 
extended gamma-ray sources along the Galactic 
plane, some of which will remain unidentified.

– The cold dark matter scenario predicts the 

presence of dark matter subhalos in that ROI.

– Among unassociated/unidentified point sources 

there may be SH.

• We quantify how many and under which 

conditions

– We show the importance of using realistic SH 

profiles for the reconstruction of the emissivity 
profile.


– A genuine subhalo, once detected, is easily 
distinguishable from a point-like source or 
Gaussian profile.


–  values in the same ballpark of what other 
strategies can probe:  for 
detection of one, brightest sub-halo.

σv
σv ∼ 10−22 cm−3 s−1
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