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Background
Dark matter halos & cosmological simulations

• Density profiles reveal information 
about the nature of dark matter

• Observations need to be 
compared to theoretical 
predictions (based on 
simulations)


• Making profiles more precise is 
extremely important          
(indirect detection, strong lensing)
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Background

• Profiles often described by a power law 
(NFW, Einasto, …) but:
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Background

• Profiles often described by a power law 
(NFW, Einasto, …) but:

[Diemer 2022a]

Dark matter density profiles

at small radii: statistical fluctuations 
and finite resolution is a problem

at larger radii: contributions from the 
particles in the outskirts of the halo alter 
the density profile
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‘Dynamical’ density profiles

• Traditional ‘binned’ way of calculating profiles: 
only the position of the particles are used


• Traditional method is throwing away important 
information from the particles phase-space 

Why is this method different?

M(r1 < r < r2)
3
4 π(r3

2 − r3
1)

r1
r2

6



Calculating the dynamical profiles
1. Calculate (spherical) gravitational potential 




2. ‘Integrate’ the orbits of the particles in the 
potential

Φ(r) [Pontzen+ 2015]
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Calculating the dynamical profiles

Integration is slow! We calculate the 
probability density  of finding 
particle  at radius 

pi(r)
i r

1. Calculate (spherical) gravitational potential 



2. ‘Integrate’ the orbits of the particles in the 
potential

Φ(r)

3. The dynamical profile is then calculated as 

ρ(rk) =
∑N

i=1 mipi,k

volume of the bin

[Pontzen+ 2015]
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• We have a first dynamical profile - but we’re not done yet

Iteration of the gravitational potential
Calculating the dynamical profiles
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• We have a first dynamical profile - but we’re not done yet

Iteration of the gravitational potential

Snapshot

Mass 
distribution 

and Φ
Particle 
orbits

Dynamical 
density

New mass 
distribution 

and Φ

New orbits

Calculating the dynamical profiles

• When we ‘spread’ the particles over multiple bins, we generate a new mass 
distribution inconsistent with the one from the snapshot

• We need to iterate until a consistent potential-density pair is obtained
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The simulation snapshots
• A selection of 7 snapshots at z=0 with a wide range of masses

EDGE sims ( )M ∼ 109 VINTERGATAN sims ( )M ∼ 1012
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The simulation snapshots
• A selection of 7 snapshots at z=0 with a wide range of masses

EDGE sims ( )M ∼ 109 VINTERGATAN sims ( )M ∼ 1012

• Halos re-simulated at 2 different resolutions: LOW and HIGH
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Results
Dynamical density profiles

[Muni+ in prep]

Dynamical (low res)
Binned (low res)
Binned (high res)
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• Poisson noise is 
considerably reduced
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Results

Similar results 
for all our halos

Dynamical density profiles

[Muni+ in prep]

EDGE ( )M ∼ 109

VINTERGATAN ( )M ∼ 1012
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Dynamical density profile
Inner regions
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Dynamical density profile
Inner regions

Dynamical (low res)
Binned (low res)
Binned (high res)

Dynamical (low res)
Binned (low res)
Binned (high res)

13



Resolution independence
Ultra-high resolution

[Muni+ in prep]

Dynamical (high res)
Binned (ultra-high res)
Binned (high res)
Binned (low res)
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Dynamical density profile
Outer regions
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Summary
• Including dynamical information gives an improved representation of the 

density profiles


• Poisson noise is significantly reduced


• Method allows to extrapolate the behaviour below convergence radius (where 
binned estimates are unreliable)


• Central gradients are consistently steeper (at the same resolution) in 
qualitative agreement with the higher res


• Method continues to agree at large radii (if there aren’t any large 
substructures)


• Results are resolution independent 
Claudia Muni: claudia.muni.21@ucl.ac.uk
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[Muni+ in prep]

Post-merger halo
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Post-merger halo
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Effect on the outer regions

[Muni+ in prep]

Dynamical, boundary: 100 kpc
Binned



Effect on the outer regions

[Muni+ in prep]

Boundary: 100 kpc
Boundary: 200 kpc


