

A definitive test of the cold dark matter hypothesis

Carlos S. Frenk Institute for Computational Cosmology, Durham

Non-baryonic dark matter candidates

From the early 1980s:

Туре	example	mass
hot	neutrino	few tens of eV
warm	sterile v	keV-MeV
cold	axion neutralino	10 ⁻⁵ eV - 100 GeV

Non-linear evolution

Non-linear evolution: simulations

Assumption about content of Universe → Initial conditions

Relevant equations:

Collisionless Boltzmann; Poisson; Friedmann eqns; Radiative hydrodynamics Subgrid astrophysics

How to make a virtual universe

-7-

LUBIMOV

Hot dark matter

1981

HAS THE NEUTRINO A NON-ZERO REST MASS? (Tritium β-Spectrum Measurement)

V. Lubimov, E. Novikov, V. Nozik, E. Tretyakov Institute for Theoretical and Experimental Physics, Moscow, U.S.S.R.

> V. Kosik Institute of Molecular Genetics, Moscow, U.S.S.R.

ABSTRACT

The high energy part of the β -spectrum of tritium in the molecule was measured with high precision by a toroidal β -spectmeter. The results give evidence for a non-zero electron antineutrino mass.

Fifty years ago Pauli introduced the neutrino to explain the C-spectrum shape. Pauli made the first estimate of the neutrino mass ($E_{3 \text{ max}} \cong$ nuclei mass defect): it should be very small or maybe zero. Up to now the study of the β -spectrum shape is the most sensitive, direct method of neutrino mass measurement. For allowed β -transitions, if $M_{\gamma} = 0$, then $S \simeq (E-E_{0})^{2}$. The

For allowed β -transitions, if $M_{y} = 0$, then by L(2 Log) the formatic parameter Kurie plot is then a straight line with the only kinematic parameter being $E_k = E_0$ (total β -transition energy). If $M_y \neq 0$, then $S \approx (E_0 - E) \sqrt{(E_0 - E)^2 - M_y^2}$. The Kurie plot is then distorted, especially near the endpoint.

Fig. 1. Kurie plot for $M_{ij} = 0$. Fig. 2. Kurie plot for $M_{ij} \neq 0$.

The method for the neutrino mass measurement is to obtain E_0 from the extrapolation and obtain E_1 from the spectrum intercept. Then $H_0 = E_0 - E_k$. Qualitatively, $H_0 \neq 0$ if the β -spectrum near the endpoint runs below the extrapolated curve.

Paper presented by Oleg Egorov.

$$m_v = 30 \text{ ev} \rightarrow \Omega_m = 1$$

things are more complicated. The apparatus resorongly affects the spectrum endpoint and rather e spectrum slope.

extrapolation. However, we are unable indicate that $M_{\downarrow} \neq 0$. If $M_{\downarrow} \leq R$, the changes due to mass and the influence of R are indistinguishable. For M_{\downarrow} termination the knowledge of R is compulsory. The background determines the statistical accuracy near the endpoint, i.e., in the region of the highest sensitivity to the ν mass. So: 1) R should be $\sim M_{\downarrow}$, 2) the smaller M_{\downarrow} is, the smaller the background ($\sim M_{\downarrow}^{-3}$) must be and the higher the statistics ($\sim M_{\downarrow}^{-3}$) must be. For example, suppose that for M_{\downarrow} = 100 eV we need resolution R, background Q, and statistics N. If M_{\downarrow} = 30 eV, to achieve the same $\Delta M/M$ they should be R/3, Q/10, and N × 30, respectively.

be R/3, U/10, and N × 30, respectively. The shorter the β -spectrum, the less it is spread due to R (as $R \lor \Delta p/p = const.$). A classical example is ³H β -decay, which has 1) the smallest $E_0 \lor 18.6$ keV, 2) an allowed β -transition, simple nucleus, and simple theoretical interpretation, 3) highly reduced radioactivity. The first experiments with ³H were by S. Curran et al. (1948) and G. Hanna, B. Pontecorvo (1949). Using ³H gas in a proportional counter, they obtained $M_0 \le 1$ keV. Further progress required magnetic spectrometer development. This allowed the resolution to be improved considerably, and L. Langer and R. Moffat (1952) obtained $M_0 \le 250$ eV. The best value was obtained by K. Bergkvist (1972): $R \lor 50$ eV and $A_0 \le 55$ eV.

The ITEP spectrometer is of a new type: ironless, with toroidal magnetic field (E. Tretyakov, 1973). The principle of the toroidal magnetic field focusing systems was proposed by V. Vladimirsky et al. (An example is a "Horn" of v-beams.) It turns out that a rectilinear conductor (current) has a focusing ability for particles emitted perpendicular to the rotation axis. This system has infinite periodical focusing structure. The ITEP spectrometer is based on this principle.

Non-baryonic dark matter cosmologies

Neutrino DM → wrong clustering

Neutrinos cannot make appreciable contribution to Ω \rightarrow m_v<< 30 ev

Non-baryonic dark matter cosmologies

Neutrino DM → wrong clustering

Neutrinos cannot make appreciable contribution to Ω $\rightarrow m_{\nu} << 30 \text{ ev}$

Early CDM N-body simulations gave promising results

In CDM structure forms hierarchically

Non-baryonic dark matter cosmologies

The properties of the dark matter distribution on all scales in CDM is a solved problem

The Millennium/Aquarius/Phoenix simulation series

The properties of the dark matter distribution on all scales in CDM is a solved problem

> 125 Mpc/h 31.25 Mpc/h

Springel et al '05, '08, Gao et al '11

The Millennium/Aquarius/Phoenix simulation series

Springel et al '05, '0 Gao et al '11

The cosmic power spectrum: from the CMB to the 2dFGRS

⇒ ACDM provides an excellent description of mass power spectrum from 10-1000 Mpc Sanchez et al 06

The cosmic power spectrum: from the CMB to the 2dFGRS

Free streaming \rightarrow

λ_{cut} α m_x-1 for thermal relic

m_{CDM} ~ 100GeV susy; M_{cut} ~ 10⁻⁶ M_o

 $m_{WDM} \sim few \ keV$ sterile v; $M_{cut} \sim 10^9 \ M_o$

cold dark matter

warm dark matter

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, Boyarski & Ruchayskiy '12

The Millennium/Aquarius/Phoenix simulation series

The properties of the dark matter distribution on all scales in CDM is a solved problem

We now know: 125 Mpc/h
→ halo mass function down to the cutoff mas
→ the internal structure of halos of all masses
→ the spatial distribution of halos & diffuse DM

0.5 Mpc/h

Springel et al '05, '08, Gao et al '11

The cold dark matter power spectrum

The cold dark matter linear power spectrum

The linear power spectrum ("power per octave")

 $\lambda_{cut} \alpha m_x^{-1}$

Assumes a 100GeV wimp Green et al '04

The Millennium/Aquarius/Phoenix simulation series

To resolve Earth-mass halos in a cosmological simulation would require 10²⁷ particles -> impossible

125 Mpc/h 31.25 Mpc/h 0.5 Mpc/h

Springel et al '05, '08, Gao et al '11

Planck cosmology

Dark matter only

Dynamic range of 30 orders of magnitude in mass

 $M_{char} = 10^{14} M_{\odot}$ Base Level

Wang, Bose et al 2020 Nature

Planck cosmology

Dark matter only

Dynamic range of 30 orders of magnitude in mass

 $M_{char} = 10^{12} M_{\odot}$ Zoom Level 1

Planck cosmology

Dark matter only

Dynamic range of 30 orders of magnitude in mass

 $M_{char} = 10^9 M_{\odot}$ Zoom Level 2

Planck cosmology

Dark matter only

Dynamic range of 30 orders of magnitude in mass

 $M_{char} = 10^6 M_{\odot}$ Zoom Level 3

Planck cosmology

Dark matter only

Dynamic range of 30 orders of magnitude in mass

 $M_{char} = 10^3 M_{\odot}$ Zoom Level 4

Planck cosmology

Dark matter only

Dynamic range of 30 orders of magnitude in mass

 $M_{char} = 10 M_{\odot}$ Zoom Level 5

Planck cosmology

Dark matter only

Dynamic range of 30 orders of magnitude in mass

 $M_{char} = 10^{-1} M_{\odot}$ Zoom Level 6

Planck cosmology

Dark matter only

Dynamic range of 30 orders of magnitude in mass

 $M_{char} = 10^{-4} M_{\odot}$ Zoom Level 7

Planck cosmology

Dark matter only

Dynamic range of 30 orders of magnitude in mass

 $M_{char} = 10^{-6} M_{\odot}$ Zoom Level 8

The density of this region is only ~3% of the cosmic mean Wang, Bose et al 2020

cold dark matter

warm dark matter

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, Boyarski & Ruchayskiy '12

The structure of dark matter halos of all masses
The Density Profile of Cold Dark Matter Halos

Universal halo density profiles

Density profile shapes

Over 20 orders of magnitude in halo mass and 4 orders of magnitude in density, the mean density profiles of halos are fit by NFW to within 20% and by Einasto $(\alpha = 0.16)$ to within 7%

Concentration-mass relation

Concentrations at small mass are lower than all previous extrapolations by up to factors of tens.

A turndown at 10³ Earth masses is due to the freestreaming limit.

The scatter depends only weakly on halo mass

Wang, Bose, CSF + '20

Neutrinos are the only non-baryonic form of dark matter known! The make on a small contribution, ~ 1%, to the dark matter

Cosmic neutrinos were produced a few seconds after the Big Bang and produce a cosmic background today

May be detected by Ptolomy experiment

The cosmic neutrino background

Willem Elbers

Elbers, CSF, Jenkins, Li, Pascoli, Lavaux, Jasche, Springel '23

Constrained realization simulations

Simulations from CDM initial conditions, with phases adjusted to reproduce the local observed galaxy clustering

Constrained by 2MASS++ survey

Sawala, CSF+ 2022; MaAlpine, Sawala, CSF+ 2022 Institute for Computational Cosmology

Constrained simulations

SIBELIUS DARK

Grey: dark matter in SIBELIUS DARK

Red: galaxies in 2M++ survey, used for reconstruction

Constrained simulations with vs

The position of the Milky Way is indicated by a white triangleElbers, CSF+ '23and the dipole direction by an arrow

Local CDM distribution in z-space

Elbers, CSF+ '23

Local v distribution in z-space

Elbers, CSF+ '23

University of Durham

Angular anisotropies

Local neutrino density perturbations without dipole:

Angular power spectrum of v perturbations

Elbers, CSF+ '23

A conclusive test of CDM

CDM

Most subhalos never make a galaxy!

HICC The two phases of galaxy formation

Phase I: H gas is neutral \rightarrow can only cool in halos m>m_{thr.1}

First stars reionize H and heat it up to 10⁴K

Phase II: H Gas is ionized (" T_{vir} " > 10⁴)

can only cool in halos m>m_{thr.2}

A galaxy formation primer

Halo Occupation Fraction (HOF): fraction of halos of a given mass today that host a galaxy

Benitez-Llambay & CSF '20

Luminosity Function of Local Group Satellites

Semi-analytic model of galaxy formation iqncluding effects of reionization and SN feedback

- Median model → correct abundance of sats brighter than M_V=-9 (V_{cir} > 12 km/s)
- Model predicts many, as yet undiscovered, faint satellites

CDM

Most subhalos never make a galaxy!

CDM predicts the observed abundance of satellites

There is no such thing as a "missing satellite problem" in CDM!

How can we test CDM?

... and distinguish CDM/WDM?

... and distinguish CDM/WDM?

cold dark matter

warm dark matter

Rather than counting faint galaxies, count the number of starless dark halos

Can we count dark haloes?

cold dark matter

warm dark matter

Gravitational lensing

H Gravitational lensing: Einstein rings

When the source and the lens are well aligned -> strong arc or an Einstein ring

SLAC sample of strong lenses

Einstein Ring Gravitational Lenses

Hubble Space Telescope • ACS

Gravitational lensing: Einstein rings

When the source and the lens are well aligned -> strong arc or an Einstein ring Institute for Computational Cosmology

Halos projected onto an Einstein ring distort the image

Vegetti et al '10

Gravitational lensing: Einstein rings

HST "data": z_{source}=1; z_{lens}=0.2

Image

 $10^{10}M_{o}$ halo – easy to spot

Residuals

He, Li, CSF et al '19

Searched for substructure in 55 lenses with good HST imaging \rightarrow 2 detections: G3 SLACS0946+1006 \rightarrow Log M_{sub} = 11.59 ^{+0.18 - 0.34} BELLS1226+5457 \rightarrow Log M_{sub} = 11.80 ^{+0.16 -0.30}

> G1 Nightingale + '22 G4

H Gravitational lensing: substructures

JWST

And another one in JWST data:

 \rightarrow Log M_{sub} = 11.59 + 0.18 - 0.34

Lange, Nightingale, CSF+ '23

Strong lensing: detecting small halos

HST "data": $z_{source}=1$; $z_{lens}=0.2$ 10⁷ M_o halo – NOT so easy to spot

Image

Residuals (image - smooth model)

He, Li, CSF et al '19

Can detect halos as small as 10⁷ M_o

He, Li, CSF et al '19

Wang, Bose, CSF, Gao, Jenkins, Springel, White - Nature 2020

Indirect CDM detection through annihilation radiation

Supersymmetric particles are Majorana particles → annihilate into Standard Model particles (including γ-rays)

Intensity of annihilation radiation at x is:

 $I(x) = \frac{1}{8\pi} \sum_{f} \frac{dN_{f}}{dE} \langle \sigma_{f} v \rangle \int_{los} \left(\frac{\rho_{\chi}}{M_{\chi}}\right)^{2} ldl$ $\int_{cross-section (particle physics)}^{halo density at x (astrophysics)}$

 $\langle \sigma v \rangle = 3 \times 10^{-26} cm^3 s^{-1}$ relic abundance in simple SUSY models

- \Rightarrow Theoretical expectation requires knowing $\rho(\mathbf{x})$
- Accurate high resolution N-body simulations of halo formation from CDM initial conditions

Density profile shapes

Over 20 orders of magnitude in halo mass and 4 orders of magnitude in density, the mean density profiles of halos are fit by NFW to within 20% and by Einasto $(\alpha = 0.16)$ to within 7%

arth-mass halo

Wang, Bose, CSF + '20

Earth-mass halo

Prompt cusp and subsequent halo growth for a peak with $z_{coll} = 87$

Prompt cusps Delos & White '22

- For standard WIMPs, they make up ~1% of all the dark matter
- In MW, disrupted by tides & stellar encounters within ~20 Kpc
- Dominate DM annihilation signal from outer halo of MW and all extragalactic objects, leading to L ρ_{DM} , not ρ_{DM}^2

Conclusions

The properties CDM (no baryons) on all scales - solved problem

• The abundance & structure of CDM halos (down to Earth's mass) and of WDM (no halos of mass $<10^8$ M_o) is now known

 CDM (and WDM) halos of all masses have NFW density profiles (except in very inner parts for halos near the cutoff)

There is NO "small-scale" crisis in CDM

Local large-scale structure is reflected in the cosmic neutrino background. MW dipole & angular PS depend in the v mass

 Distortions of strong gravitational lenses offer a clean test of CDM vs WDM → and can potentially rule out CDM!

Prompt cusps of Earth mass dominate the annihilation radiation from outer halo of MW and extragalactic objects