The Simons Observatory: next-generation CMB telescopes and science goals

Serena Giardiello, Cardiff University
Cosmology 2023 in Miramare, 28/08/2023

The Simons Observatory Collaboration

Construction of nominal project is funded privately and is fully under way. 300+ collaborators 40+ institutions 10 countries

SO is a next-generation, ground-based **cosmic microwave background (CMB)** experiment designed to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Now built in the Atacama desert. **First data in 2024!**

CMB radiation produced in the early Universe, affected by its propagation through evolving structures

SO is a next-generation, ground-based **cosmic microwave background (CMB)** experiment designed to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics.

credits: J. Errard

10

credits: Erminia Calabrese

SO forecast paper 2019

Constraints on Neff

LAT science, small scales:

Forecasted constraints on axion fraction

Forecasted sensitivity on neutrino masses

SO key science goals

From: The Simons
Observatory:
science goals and
forecasts

Peter Ade, et al., JCAP02 (2019) 056

https://ui.adsabs. harvard.edu/abs/ 2019JCAP...02..0 56A/abstract

with *Planck* data.

Parameter SAT		SO-Baseline ^a (no syst)	${f SO-Baseline}^b$	$SO\text{-}Goal^c$	Current ^d (2018-19)	Method	Sec.
Primordial	r	0.0024	0.003	0.002	0.03	BB + ext delens	3.4
perturbations	$e^{-2\tau}\mathcal{P}(k=0.2/\mathrm{Mpc})$	0.4%	0.5 %	0.4%	3%	TT/TE/EE	4.2
	$f_{ m NL}^{ m local}$	1.8	3	1	5	$\kappa\kappa\times \text{LSST-LSS} + 3\text{-pt}$	5.3
LAT	500000000	1	2	1		$\rm kSZ + LSST\text{-}LSS$	7.5
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE + \kappa\kappa$	4.1
Neutrino mass	$\Sigma m_{ u}$	0.033	0.04	0.03	0.1	$\kappa\kappa$ + DESI-BAO	5.2
		0.035	0.04	0.03		tSZ-N \times LSST-WL	7.1
		0.036	0.05	0.04		tSZ-Y+DESI-BAO	7.2
Deviations from Λ	$\sigma_8(z=1-2)$	1.2%	2 %	1%	7%	$\kappa\kappa$ + LSST-LSS	5.3
		1.2%	2 %	1%		tSZ-N \times LSST-WL	7.1
	H_0 (Λ CDM)	0.3	0.4	0.3	0.5	$TT/TE/EE + \kappa\kappa$	4.3
Galaxy evolution	$\eta_{ m feedback}$	2%	3%	2%	50-100%	kSZ + tSZ + DESI	7.3
	$p_{ m nt}$	6%	8%	5%	50 100%	$\mathrm{kSZ} + \mathrm{tSZ} + \mathrm{DESI}$	7.3
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)	7.6

^a This column reports forecasts from earlier sections (in some cases using 2 s.f.) and applies no additional

Table 9. Summary of SO key science goals. All of our SO forecasts assume that SO is combined

systematic error.

^b This is the nominal forecast, increases the column (a) uncertainties by 25% as a proxy for instrument

systematics, and rounds up to 1 s.f.

^c This is the goal forecast, has negligible additional systematic uncertainties, and rounds to 1 s.f.

d Primarily from [44] and [287]. [44] BICEP2 and Planck collaborations, Joint Analysis of BICEP2/Keck Array and Planck Data, Phys. Rev. Lett. 114 (2015) 101301 [287] Planck collaboration, Planck 2018 results. VI. Cosmological parameters

Additional goals and Data combinations

SO Collaboration (2019)

-		Parameter	SO-Baseline	Method
	T	CZ 1	90,000	107
	Legacy catalogs	SZ clusters	20,000	tSZ
		AGN	10,000	Sources
		Polarized AGN	300	Sources
LAT		Dusty star-forming galaxies	10,000	Sources
	D: 1:1 1 1 1	((1 , 1 , 1)	90	m/n
	Primordial perturbations	$f_{ m NL}$ (equilateral)	30	T/E
		$f_{ m NL}$ (orthogonal)	10	mm (mp / pp
		n_s	0.002	$TT/TE/EE + \kappa\kappa$
	D: 1 1 11	77 / · · · · · · · · · · · · · · · · · ·	0.00	## (#F / F F .
	Big bang nucleosynthesis	Y_P (varying $N_{ m eff}$)	0.007	$TT/TE/EE + \kappa\kappa$
		$\Omega_b h^2 \; (\Lambda { m CDM})$	0.00005	$TT/TE/EE + \kappa\kappa$
	D 1	DM 1	10-27	TT (TT LT L
	Dark matter	DM-baryon interaction (σ_p, MeV)	5×10^{-27}	$TT/TE/EE+\kappa\kappa$
		UL axion fraction $(\Omega_a/\Omega_d, m_a = 10^{-26} \text{ eV})$	0.005	$TT/TE/EE+\kappa\kappa$
	.			
	Dark energy or	w_0	0.06	tSZ + LSST
	modified gravity	w_a	0.2	tSZ + LSST
		Growth rate $(\Delta(\sigma_8 f_g)/\sigma_8 f_g)$	0.1	kSZ + DESI
			112011200200	
	Shear bias calibration	$m_{ m z=1}$	0.007	$\kappa\kappa + \mathrm{LSST}$
	D	1 ()	0.0	mm /m = / = = (1 cm)
	Reionization	$\log_{10}(\lambda_{\mathrm{mfp}})$	0.3	TT/TE/EE (kSZ)
		Ionization efficiency (ζ)	40	TT/TE/EE (kSZ)

SO: New Opportunities in mm-Transient Science

Variable Active Galactic Nuclei: track thousands daily/weekly/monthly at 1-10 mm.

Potential of mm transients: e.g. orphan afterglows of Gamma Ray Bursts

Potential follow-up of Rubin Observatory optical transients

In addition to wealth of CMB science (early and late-time signals), 30k high-z dusty galaxies, 20k clusters and Galactic science

[Previous | Next | ADS]

ACT-T J061647-402140: a Strongly Variable, Flaring Source at 90, 150 and 220 GHz Positionally Coincident with the Transient Gamma-Ray Blazar, Fermi 0617-4026

ATel #12738; Sigurd Naess (Center for Computational Astrophysics, Flatiron Institute) on behalf of the ACT Collaboration
on 8 May 2019; 23:32 UT
Credential Certification: John P. Hughes (iph@physics.rutgers.edu)

out the state of t

Flares

Galactic **Astronomy**

Interstellar Dust

SIMONS OBSERVATORY

Cosmology and Particle Physics

The Evolution of the Universe **Over Cosmic Time**

SO commitment to outreach & engagement

Education

- Undergraduate Summer Research (~30 students/summer)
- Mentorship Program (~50 mentees, half from underrepresented minority)
- Work with schools
 - Cosmology webinar for teachers (~100 teachers so far)
 - Skype a Scientist (>50 classrooms)

Outreach

- Average 75 events per year reaching 10s of thousands
- Organized three Science/Astro on Tap Series
- Recent event connecting 8th graders to Jessica Meir aboard Shuttle

Engagement

Multiple "hack-a-thons" to transfer skills

Art & Science Book

STEM Camp in Trenton, NJ

The SO site

5,200 meters in the Atacama desert, in Northern Chile

23 degree South Latitude

Established site

Room for expansion

Simons Observatory telescopes

credits: Michael Brown

A 6m crossed-Dragone telescope feeding up to thirteen 38cm optics tubes. Baseline = 7 tubes

Frequencies:

- 27/39 GHz: 1 tube
- 93/150 GHz: 4 tubes
- tubes. Baseline = 7 tubes. 220/280 GHz: 2 tubes

An array of 42cm refractors. Baseline for SO = 3 telescopes and 4 receivers:

Frequencies:

- 27/39 GHz: 1 receiver
- 93/150 GHz: 2 receivers
- 220/280 GHz: 1 receiver

SO Surveys

- $f_{sky} \sim 0.1$
- 0.5° angular resolution at 93 GHz
- 2 μK-arcmin noise level coadded over 93 and 150 GHz channels
- optimized for B-modes observation (avoiding Galactic plane, limited range of elevations)

- $f_{sky} \sim 0.4$
- 2.2'/1.4' resolution at 93/150 GHz
- 6.5 μK-arcmin noise level coadded over 93 and 150 GHz channels
- overlap with LSST and DESI is optimized

+3 SATs with UK and Japan funds

~60,000 detectors

~90,000 detectors

SO:JP

SO:UK components

Data Centre

Delivering "Science Ready"

Data Products for SO.

SAT/LAT commissioning: 2025-2026

Algorithms

Analysis algorithms needed for SO data processing.

Two additional SATs

Baseline is for both SATs to be MF.As a goal, will also explore one MF and one UHF.

LAT Optics Tube

A single ultra-high frequency (UHF) optics tube for the LATR.

Science and Technology Facilities Council

* Funding (£22.3M) has been awarded for all of these elements. Full project has now started (October 22).

Advanced SO – Project Definition

Optics Tubes

- Six New Optics Tubes
- Double Mapping Speed
- Enable Transient Detection
- No Development Required

Data Management

- Full Maps Processed in 6 Months
- Daily Transient Alerts
- Verification and Systematics Mitigation

Photo Voltaic Array

- 9% increase in Observing Efficiency
- Reduced Carbon Footprint (reduce diesel-generated power by 70%)
- Reduced Maintenance Costs

