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• What is Dark Matter?


• What is the nature of Dark 
Energy?


• What is the correct theory 
of Inflation? 


• Which are the neutrino 
masses?


• Tensions


• ….

Many open questions:

CMB:
“simple”, almost perfectly Gaussians…but 
faint and highly contaminated 

(foregrounds and instrumental systematics)

Large Scale Structure:
Complex signal, involving highly non linear 
physical process 



CMB experiments

Galaxy surveys

Early Universe - faint signal

Large Scale Structure - complex signal



Are current methodologies sufficient, given 
the amount of data, the signal complexity 

and the precision we want to achieve?

How to fully exploit data? 




Standard way of analyzing data


Theory and 
simulations


Definition and 
computation of 

summary statistics

Definition of the 
likelihood model 
and inference

Machine Learning have the potential to help in all these steps (except 
theory) by being more efficient or faster than traditional methods




Emulators


• Algorithms that approximate the outputs of 
computationally expensive models (Einstein-Boltzmann 
codes, e.g CAMB/CLASS) at significantly lower 
computational costs.


• Often based on simple Neural Networks architectures 
(fully-connected, few layers) 


• Efficient way to considerably speed up the sampling of 
parameter’s space in standard MCMC inference


• Already proved to be a valuable tool also on analysis of 
real data.

16

Figure 16. Comparison of 2D marginalized posterior probability distributions between C����P���� (blue contours) and the reference ���� chains (red
contours, dashed line) downloaded from the Planck legacy archive (footnote 19) for the Planck 2018 CMB lensing likelihood + DES-Y1 + BAO analysis. See
Section 5.2 for details.
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ML-based/likelihood free 
inference

• No need to define and compute summary statistics from the data, in principle no loss of information


• No need of an analytical likelihood model, trained only on simulations 

• Potentially powerful for both LSS (complex non-Gaussian 
signal) and CMB (Gaussian signal, but highly 
contaminated by non-Gaussian foregrounds and 
instrumental systematic effects) 


• Many different implementations, mostly applied, tested 
and validated on simulations


• Application to real data still lacking!

Villaescusa-Navarro, F et al. https://arxiv.org/abs/2109.09747

https://arxiv.org/abs/2109.09747


Inference of the optical depth to reionization  from Planck 
CMB maps with convolutional neural networks

τ

Kevin Wolz, Nicoletta Krachmalnicoff, Luca Pagano

https://arxiv.org/abs/2301.09634

• One of the first work in CMB field that robustly applies likelihood-free inference fully 
based on Convolutional NNs to real, non ideal, data!


• Tested the applicability of this approach on the estimation of the optical depth to 
reionization, 


•  impacts the very large angular scales of CMB E-modes, largely affected by 
instrumental systematics and Foreground residuals


• First instructive test before applying the method to primordial B-modes for future 
experiments 

τ

τ

Motivations:

https://arxiv.org/abs/2301.09634
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Fig. 1. SRoll2 data products of the Planck Q and U maps at
frequencies 100 GHz and 143 GHz, post component separation,
used in this work, displayed in Galactic coordinates.

Fig. 2. Smoothed version of the SRoll2 sky masks at sky frac-
tions 50% and 60% used in this paper, displayed in Galactic
coordinates.

2.5. Masks

At low Galactic latitudes, the Milky Way emits polarized
foreground radiation which dominates the CMB signal in
intensity and polarization. Even after component separa-
tion, residuals of this emission needs to be excluded from
the analysis to avoid biasing cosmological analyses. We
therefore apply masks to all maps described in the previ-
ous subsections. We consider two of the binary polarization
masks published in Pagano et al. (2020), retaining sky frac-
tions of fsky = {50%, 60%}. We smooth them with Gaus-
sian beams of corresponding FWHM of {15�, 16�}, and ap-
ply a binary threshold, setting all pixels with a value larger
than 0.5 to one and all others to zero. This procedure allows
us to avoid fuzzy borders and mitigate groups of isolated
masked pixels. The smoothed masks are shown in Figure 2.
Our baseline mask in this paper is the fsky = 0.5 smoothed
mask, as it retains enough large-scale information to con-
strain ⌧ , but avoids excessive levels of foregrounds in the
Galactic plane.

3. NN inference

In this work, we use CNNs to build simulation-based empir-
ical models to perform cosmological inference. In the follow-
ing, we describe our CNN implementation and give details
on the procedures applied to train and test our model on
simulations.

Fig. 3. Schematic of the convolutional layers of the neural net-
work used in this paper. This represents the first part of the
architecture, performing image filtering.

3.1. CNN architecture for ⌧ estimation

CNNs are the industry standard of pattern recognition in
2-dimensional images, performing both classification (e.g.,
identifying families of objects) and regression tasks (e.g.,
estimating continuous parameters on maps). The success
of CNNs in extracting low-dimensional information from
visual input is due to a multi-layer image filtering algo-
rithm. This typically involves searching for distinct sets of
local features in the original image (through convolution)
and compressing the data (through so-called pooling lay-
ers), going to lower and lower resolution, before inferring
the desired summary statistic.

In our case, we want to retrieve information from
data projected on the sphere, requiring convolutions on
the spherical domain. To this end, we make use of the
NNhealpix2 algorithm which allows to build deep spheri-
cal CNNs taking advantage of the HEALPix tessellation. In
particular, NNhealpix performs convolution by looking at
the first neighbors for each pixel on the map, and average
pooling by downgrading the map resolution (i.e. by going
to lower Nside parameter). We refer to Krachmalnicoff &
Tomasi (2019) for additional details on how the algorithm
works, as well as its advantages and disadvantages. In this
work, we use NNhealpix in combination with the public
keras python package3 to build our deep CNN architec-
ture, and to perform training, validation and testing.

The first part of our CNN, performing image filtering,
consists of four CNN building blocks, as illustrated in Fig-
ure 3. We accept Nmap input maps, which in our case rep-
resent one or two frequency channels and Stokes Q and U

maps, hence Nmap = 2 or 4. Each convolutional layer intro-
duces 32 filters with 9 trainable pixel weights, respectively,
and is followed by a Rectified Linear Unit (ReLU) activation
layer. Mathematically, this means each image pixel pi un-
dergoes a linear transformation f followed by a nonlinear
transformation g

pi 7! p
0
i = (f � g)(pi) , (2)

f(pi) = piw0 +

Nneigh(i)X

j=1

pkj(i)wj , (3)

g(x) ⌘ max(0, x) , (4)

2 https://github.com/ai4cmb/NNhealpix
3 https://keras.io
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bump and supresses the small-scale power. However, since the small-scale power has been

measured precisely, the value of exp(�2⌧)As is fixed; thus, for a given measured value of the

high-` power spectrum, the amplitude of the reionization bump scales as ⌧2As / ⌧
2 exp(2⌧).

We can use this to determine the value of ⌧ , which in turn provides an integrated constraint

on the reionization history of the Universe because ⌧ = �TNe, where the column density of

electrons is given by Ne = c
R
dt ne integrated from today to the beginning of reionization.

This number can be compared with the expected number of electrons from ionization by

star-forming galaxies and quasars (including X-ray emission from accretion disks around

black holes); see Fig. 47.

Fig. 48: Measurements of ⌧ based on the CMB power spectra: WMAP (2012) [75]; Planck

(2013) [332]; Planck (2015) [289]; Planck (2016) [330]; WMAP+LFI (2018) [333]; Planck

(2018) [279]; Planck -HFI (2019) [334]; WMAP+LFI (2020) [335]; and Planck (2020) [331].

The gray band shows the LiteBIRD uncertainty forecast for ⌧ .

Accurate measurements of ⌧ through the CMB are challenging because of the foreground

contamination and instrumental systematic uncertainties [336]. These are most problematic

on large angular scales, where the bulk of the information on ⌧ is constrained. This di�culty

is illustrated by the evolution of the constraint over time from the firstWMAP release in 2003

(⌧ = 0.17 ± 0.06 [337]) using the TE cross-correlation, up to the latest Planck collaboration

results (⌧ = 0.051 ± 0.006 [331], obtained from the “NPIPE” reprocessing of the Planck

legacy data) using polarized EE measurements (see Fig. 48 for a complication of ⌧ estimates,

where time increases from top to bottom).

114/156

Planck maps and  estimatesτ
• Planck maps at 100 and 143 GHz are known to contain significant level of residual systematic 

effects (mainly due to T-to-P leakage) at large angular scales


• Although mitigated by the optimization of the map making procedure (e.g. Sroll2 maps), they 
cannot be considered negligible


• These residual non-Gaussian signals are hard to be analytically modeled


• Current constraints on  are obtained from an empirical likelihood based on cross-spectraτ



NN approach 

• Estimate  with convolutional NN directly from maps (without computation of 
power spectra), combining information from multiple channels


• No need of a likelihood model, but only large set of simulations to train the NN


• Two types of simulations: 


• Convolution of the sphere, using the NNhealpix algorithm, since we are dealing 
with super-degree angular scales

τ

‣CMB + Gaussian correlated noise (from Planck covariances)

‣CMB + Gaussian + Systematics (limited to 500 realizations!) 




Results on simulations
• NN trained on Gaussian simulations (CMB + Gaussian correlated noised)


• Having one channel (100 GHz) or two channels input (100 and 143 GHz)

A&A proofs: manuscript no. output

achieve this, we apply our trained model to real Planck

data. In all the cases presented in this Section, the CNNs
are trained and tested considering the fsky = 0.5 mask as
our reference (see Figure 2).

4.1. Gaussian training

As aforementioned, we first test the ability of our CNN
to estimate the value of ⌧ considering only Gaussian noise.
These simulations have noise amplitude and pixel-pixel cor-
relation estimated directly from Planck maps, and therefore
serve as a good description of the Gaussian noise present
in real data. At the same time they lack for realism, since
they do not include any non-Gaussian residual systematic
effects or foreground contamination that are known to be
present on the Planck SRoll2 maps. We therefore expect
these models (to which we refer to as “Gaussian models”)
to lead to a bias on ⌧ when applied to the more realistic
SRoll2 simulations or on data.

4.1.1. Single channel

We begin by training our CNN on Stokes Q and U maps
with Gaussian Planck-like noise and CMB at 143 GHz
only, thus feeding Nmap = 2 maps to the network. In the
left hand side of Table 1, we show the results of testing
Nsims = 10, 000 Gaussian simulations of CMB and noise
generated with fiducial ⌧ = 0.05, 0.06 and 0.07, respec-
tively. The average learnt mean posterior values ⌧NN are
close to be unbiased and deviate at the 0.2� level. The aver-
age learnt posterior standard deviations �NN(⌧) are within
5% agreement with the sample scatter across simulations,
�(⌧NN).

In order to test the performance of this Gaussian model
also on non-Gaussian Planck-like maps, we tested this
model on 10,000 SRoll2 simulations generated with fidu-
cial ⌧ = 0.06 (see Section 2.3). As illustrated in the upper
right panel of Figure 5, this leads to a > 1�-bias on ⌧NN.
These tests on a single frequency channel leave us with
two conclusions: on the one hand, CNNs are able to cor-
rectly retrieve ⌧ and its statistical uncertainty from a single
Planck-like simulation of the 143 GHz channel containing
correlated Gaussian noise. On the other hand, systematic
effects present in the Planck SRoll2 simulations bias the
single-channel CNN inference, as expected. To improve our
results, we add another frequency channel to the inference
pipeline, seeking to mitigate this bias. We expect that com-
bining two channels should lead to a lower error bar and a
lower bias on the SRoll2 simulations, in a similar way as
cross-spectra achieve lower noise bias than auto-spectra.

4.1.2. Two channels

As a second test, we add the HFI channel at 100 GHz in the
training and testing procedures, simulated as CMB plus the
corresponding Gaussian correlated noise, so that Nmap = 4

maps are fed into the neural network. The results from test-
ing on Gaussian noise are shown in Table 1. We note two
positive effects: firstly the small bias observed for Gaussian
noise on a single channel is further reduced to below 1% of
a standard deviation. Secondly, the learnt �NN(⌧) decreases
by more than 10% when training on two frequency chan-
nels. Meanwhile, the prediction of the posterior standard

Fig. 5. Predictions of ⌧NN from 10, 000 simulations with input
⌧ = 0.06, containing either CMB with Gaussian noise (left pan-
els) or CMB with SRoll2 noise + systematics (right panels).
The two rows denote different CNN models trained on CMB
with Gaussian noise on a single frequency channel (top), on two
frequency channels (bottom).

deviation stays within 5% of the sample standard deviation
of the inferred ⌧NN. The same results are visualized in Fig-
ure 5 for fiducial ⌧ = 0.06, showing significant improvement
of the two-channel CNN inference in the lower panels with
respect to the one-channel results (upper panels). We pro-
ceed to test this two-channel Gaussian model on SRoll2
simulations. As shown in the right panel of Figure 5, for
fiducial ⌧ = 0.06, the addition of a second channel allows
for a significant reduction of the systematic-related bias in
⌧NN and to a better statistical constraint. This leads us to
conclude that CNNs are able to recognize common features
across channels, combining the information to reduce the
statistical uncertainty and to efficiently ignore uncorrelated
systematic effects.

The corresponding quantitative results, for all the three
⌧ values used during testing, are found in Table 2: adding a
second channel in the Gaussian training model leads to im-
proved results on the SRoll2 test simulations for all consid-
ered values of ⌧ . However, a residual bias is still present, es-
pecially when the CMB signal is smallest, i.e for ⌧ = 0.005.

Moreover, we notice that, when applied to SRoll2 maps,
the models trained on Gaussian simulations return values of
�NN(⌧) not in agreement with the actual spread of estimates
�(⌧NN), with the latter being up to ⇠ 25% larger. This
implies that the learnt error is not accurate in this case,
and therefore cannot be used to described the uncertainties
of our inferred ⌧ values on SRoll2 maps. We will address
error bars in Section 4.4.

4.2. Comparison with Bayesian inference from cross-QML
power spectrum estimates

In this section we compare NN inference results with results
coming from a standard Bayesian approach applied to E-
mode power spectra. In particular, we consider quadratic
Maximum Likelihood (QML) estimates (e.g. Tegmark &
de Oliveira-Costa (2001)) of the 100⇥143 GHz EE cross-
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Single channel tested 

on Gaussian sims:


unbiased estimation 

Two channels tested

on Gaussian sims:


reduced error 

Single channel tested 

on sims with systematics:


highly biased results 

Two channel tested 

on sims with systematics:


almost unbiased  
results! 



Results on simulations

Kevin Wolz et al.: Inference of ⌧ from Planck maps with convolutional NNs

Table 4. ⌧ predictions from 10, 000 CMB + SRoll2 test simulations generated with three different fiducial ⌧ values. We show
results using two frequency channels, either training on SRoll2 from the start, or retraining on SRoll2 maps. Displayed are the
average posterior mean, average predicted standard deviation �NN(⌧) and the scatter �(⌧NN) calculated across the test simulations.

Test on SRoll2 simulations

143+100 GHz 143+100 GHz
SRoll2 training SRoll2 retraining

fiducial ⌧ ⌧NN �NN(⌧) �(⌧NN) ⌧NN �NN(⌧) �(⌧NN)

0.05 0.0526 0.0059 0.0066 0.0508 0.0077 0.0091
0.06 0.0622 0.0062 0.0070 0.0606 0.0079 0.0088
0.07 0.0722 0.0064 0.0070 0.0707 0.0081 0.0087

Fig. 7. Neural network accuracy in predicting the true ⌧ input
from 10, 000 simulations. Step-filled histograms show the results
on unseen test simulations, black outlines show the results on a
subset of the actual training simulations. We compare a network
exclusively trained on SRoll2 simulations (left panel) with a
Gaussian network retrained on SRoll2 simulations (right panel).

strated that our Gaussian CNN model is not affected by
overfitting issues and, if trained on two channels, performs
reasonably well even on SRoll2 simulations. This motivates
us to leverage the existing results on Gaussian networks to
solve the overfitting issue with as little changes as possible.
To this end, we choose the approach of retraining the two-
channel Gaussian model on the full set of SRoll2 training
simulations, while targeting two specific goals:

(i) The retrained CNN should learn to extract information
on the systematic effects present in the SRoll2 simu-
lations, and update its CNN weights just enough to
achieve fully unbiased results on the SRoll2 training
set.

(ii) At the same time, we want to ensure that the infor-
mation already learnt is not destroyed during the new
training phase (an issue sometimes referred to as catas-
trophic forgetting, see e.g. Kirkpatrick et al. (2017), Ra-
masesh et al. (2021)), avoiding going back to the over-
fitting situation described in the previous section.

We achieve this by performing what we call “minimal re-
training”: we choose the hyper-parameters of the NN such
that we obtain unbiased results on the SRoll2 test simu-
lations while making minimal changes to the original net-
work. We find an optimal setup by setting the number of
retraining epochs to 5 while choosing a small learning rate
of LR = 10

�7, without making any additional changes to
the original network architecture.

The right panel of Figure 7, in complete analogy to
the left panel, compares the distribution of �⌧ from the
SRoll2-retrained model on training simulations (black con-

Fig. 8. Predictions of ⌧NN on 10, 000 SRoll2 simulations with
input ⌧ = 0.05, 0.06 and 0.07 (first, second, third row, re-
spectively). The two columns display two different NN models
trained on two channels of Gaussian simulations (left panels),
and retrained on two channels of SRoll2 simulations (right pan-
els). All result are for fsky = 0.5.

tours), or test simulations (green filled histogram). We find
both histograms in good agreement, indicating that unlike
the SRoll2-trained model, the retrained model does not
suffer from overfitting, thus achieving our goal (ii) defined
above. Table 4 on the right-hand side lists the results of
the SRoll2-retrained model on SRoll2 test simulations. We
find ⌧NN = 0.0508, 0.0606 and 0.0707 for the respective in-
put values of ⌧ = 0.05, 0.06 and 0.07. This amounts to a
bias below �⌧ = 8⇥ 10

�4, or . 0.1�. In Figure 8 we show
a comparison of the results on SRoll2 test sets obtained by
Gaussian versus SRoll2-retrained CNNs. The reduction of
the bias is evident, in particular for ⌧ = 0.05. Therefore,
we choose the retrained approach as our baseline model to
estimate ⌧ on real Planck data. At the same time, this ap-
proach brings an increase in �(⌧NN), an effect not seen with
the SRoll2 training procedure described in Section 4.3.15.
This could be the consequence of the typical variance-bias
5 Compare 4th column in Table 4 with 7th column in Table 3
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• Arriving to fully unbiased results on maps 
that include systematic effects requires to 
include those systematics in the training 
procedure


• Limited by the number of realizations 
(only 500)


• Minimal retraining procedure:


➡ Starting with Gaussian NN we use 400 
realization of systematics to update the 
NN weight


➡ Update must be large enough to arrive to 
unbiased results but not too big to destroy 
what already learnt 



Results on Planck data

Kevin Wolz et al.: Inference of ⌧ from Planck maps with convolutional NNs

Fig. 9. NN predictions of ⌧ from Planck 100+143 GHz data, resulting from training 100 equivalent models with different random
initial weights and random seeds for training data, considering Gaussian two-channel training (blue tones) versus SRoll2 retraining
(orange tones), and fsky = 0.5 (downward triangles) versus fsky = 0.6 (upward triangles). Colored triangle markers show the best-
fit values for the single models and horizontal lines in the corresponding colors show the ensemble average of ⌧ (middle) ± the 68%
confidence interval (upper and lower lines).

Table 5. Results from Planck data on two different sky masks, using Gaussian NNs, SRoll2-retrained NN models and the empirical
C`-based likelihood presented in Pagano et al. (2020). The NN results are averaged over 100 models, and �(⌧NN) is computed from
10,000 simulations with input ⌧ = 0.058.

Predictions on Planck SRoll2 data

143+100 GHz 143+100 GHz 143x100 GHz
Gaussian training SRoll2 retraining C` likelihood

fsky ⌧NN �(⌧NN) ⌧NN �(⌧NN) ⌧ �(⌧)

50% 0.0588 0.0063 0.0579 0.0082 0.0566 0.0062
60% 0.0593 0.0059 0.0583 0.0078 0.0577 0.0054

Fig. 10. Results on ⌧ obtained from Planck SRoll2 data. The
values in this plot are shown in Table 5.

fsky = 0.6. Results on parameter estimation are stable
for both retrained and Gaussian model, while uncertain-
ties are reduced. The NN predictions of the single models
on fsky = 0.6 are displayed in Figure 9. A summary of our
results on Planck maps is shown in Figure 10 and Table 5.

6. Conclusions
In this paper, we present the first cosmological parameter
inference on Planck’s CMB polarization maps that is per-
formed entirely by neural networks. We estimate the optical
depth to reionization, ⌧ , from the SRoll2 low resolution po-
larization maps of Planck-HFI at 100 and 143 GHz. These

maps are known to contain a significant level of residual
systematic effects at large angular scales that, if ignored,
would bias cosmological results. These spurious signals are
non-Gaussian and hard to model in an analytical way. For
this reason, in the literature (Pagano et al. 2020, P2020),
the estimation of ⌧ from these maps is obtained by sam-
pling an empirical EE cross-spectrum likelihood (Planck
Collaboration V 2020; Gerbino et al. 2020), built from a
set of realistic SRoll2 simulations (Delouis et al. 2019).

In this work, we approach this problem through NN-
based inference applied directly on the map domain. One
of the benefits of this method is that it does not require
an analytical model of the data but, instead, relies solely
on using simulations to train a regression model. In par-
ticular, we use the NNhealpix algorithm to build our NN
models, allowing the application of convolutional layers on
the sphere. We consider several setups to train and validate
CNNs on multiple sets of simulations, before applying them
to Planck data. We adopt the moments loss function of Jef-
frey & Wandelt (2020) to learn the mean and standard de-
viation of the marginal posterior on ⌧ inferred from Stokes
Q and U maps pixelized on a grid at Nside = 16 (⇠ 4

�).
To find the best training method, we start from simulations
of a single frequency channel of CMB with coadded Gaus-
sian correlated noise and, step by step, move to more com-
plex setups that involve two frequency channels containing
CMB, noise and systematic effects. We compare the results
obtained with NNs with the ones from a standard Bayesian
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Fig. 9. NN predictions of ⌧ from Planck 100+143 GHz data, resulting from training 100 equivalent models with different random
initial weights and random seeds for training data, considering Gaussian two-channel training (blue tones) versus SRoll2 retraining
(orange tones), and fsky = 0.5 (downward triangles) versus fsky = 0.6 (upward triangles). Colored triangle markers show the best-
fit values for the single models and horizontal lines in the corresponding colors show the ensemble average of ⌧ (middle) ± the 68%
confidence interval (upper and lower lines).

Table 5. Results from Planck data on two different sky masks, using Gaussian NNs, SRoll2-retrained NN models and the empirical
C`-based likelihood presented in Pagano et al. (2020). The NN results are averaged over 100 models, and �(⌧NN) is computed from
10,000 simulations with input ⌧ = 0.058.

Predictions on Planck SRoll2 data

143+100 GHz 143+100 GHz 143x100 GHz
Gaussian training SRoll2 retraining C` likelihood

fsky ⌧NN �(⌧NN) ⌧NN �(⌧NN) ⌧ �(⌧)

50% 0.0588 0.0063 0.0579 0.0082 0.0566 0.0062
60% 0.0593 0.0059 0.0583 0.0078 0.0577 0.0054

Fig. 10. Results on ⌧ obtained from Planck SRoll2 data. The
values in this plot are shown in Table 5.

fsky = 0.6. Results on parameter estimation are stable
for both retrained and Gaussian model, while uncertain-
ties are reduced. The NN predictions of the single models
on fsky = 0.6 are displayed in Figure 9. A summary of our
results on Planck maps is shown in Figure 10 and Table 5.

6. Conclusions
In this paper, we present the first cosmological parameter
inference on Planck’s CMB polarization maps that is per-
formed entirely by neural networks. We estimate the optical
depth to reionization, ⌧ , from the SRoll2 low resolution po-
larization maps of Planck-HFI at 100 and 143 GHz. These

maps are known to contain a significant level of residual
systematic effects at large angular scales that, if ignored,
would bias cosmological results. These spurious signals are
non-Gaussian and hard to model in an analytical way. For
this reason, in the literature (Pagano et al. 2020, P2020),
the estimation of ⌧ from these maps is obtained by sam-
pling an empirical EE cross-spectrum likelihood (Planck
Collaboration V 2020; Gerbino et al. 2020), built from a
set of realistic SRoll2 simulations (Delouis et al. 2019).

In this work, we approach this problem through NN-
based inference applied directly on the map domain. One
of the benefits of this method is that it does not require
an analytical model of the data but, instead, relies solely
on using simulations to train a regression model. In par-
ticular, we use the NNhealpix algorithm to build our NN
models, allowing the application of convolutional layers on
the sphere. We consider several setups to train and validate
CNNs on multiple sets of simulations, before applying them
to Planck data. We adopt the moments loss function of Jef-
frey & Wandelt (2020) to learn the mean and standard de-
viation of the marginal posterior on ⌧ inferred from Stokes
Q and U maps pixelized on a grid at Nside = 16 (⇠ 4

�).
To find the best training method, we start from simulations
of a single frequency channel of CMB with coadded Gaus-
sian correlated noise and, step by step, move to more com-
plex setups that involve two frequency channels containing
CMB, noise and systematic effects. We compare the results
obtained with NNs with the ones from a standard Bayesian
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Fig. 1. SRoll2 data products of the Planck Q and U maps at
frequencies 100 GHz and 143 GHz, post component separation,
used in this work, displayed in Galactic coordinates.

Fig. 2. Smoothed version of the SRoll2 sky masks at sky frac-
tions 50% and 60% used in this paper, displayed in Galactic
coordinates.

2.5. Masks

At low Galactic latitudes, the Milky Way emits polarized
foreground radiation which dominates the CMB signal in
intensity and polarization. Even after component separa-
tion, residuals of this emission needs to be excluded from
the analysis to avoid biasing cosmological analyses. We
therefore apply masks to all maps described in the previ-
ous subsections. We consider two of the binary polarization
masks published in Pagano et al. (2020), retaining sky frac-
tions of fsky = {50%, 60%}. We smooth them with Gaus-
sian beams of corresponding FWHM of {15�, 16�}, and ap-
ply a binary threshold, setting all pixels with a value larger
than 0.5 to one and all others to zero. This procedure allows
us to avoid fuzzy borders and mitigate groups of isolated
masked pixels. The smoothed masks are shown in Figure 2.
Our baseline mask in this paper is the fsky = 0.5 smoothed
mask, as it retains enough large-scale information to con-
strain ⌧ , but avoids excessive levels of foregrounds in the
Galactic plane.

3. NN inference

In this work, we use CNNs to build simulation-based empir-
ical models to perform cosmological inference. In the follow-
ing, we describe our CNN implementation and give details
on the procedures applied to train and test our model on
simulations.

Fig. 3. Schematic of the convolutional layers of the neural net-
work used in this paper. This represents the first part of the
architecture, performing image filtering.

3.1. CNN architecture for ⌧ estimation

CNNs are the industry standard of pattern recognition in
2-dimensional images, performing both classification (e.g.,
identifying families of objects) and regression tasks (e.g.,
estimating continuous parameters on maps). The success
of CNNs in extracting low-dimensional information from
visual input is due to a multi-layer image filtering algo-
rithm. This typically involves searching for distinct sets of
local features in the original image (through convolution)
and compressing the data (through so-called pooling lay-
ers), going to lower and lower resolution, before inferring
the desired summary statistic.

In our case, we want to retrieve information from
data projected on the sphere, requiring convolutions on
the spherical domain. To this end, we make use of the
NNhealpix2 algorithm which allows to build deep spheri-
cal CNNs taking advantage of the HEALPix tessellation. In
particular, NNhealpix performs convolution by looking at
the first neighbors for each pixel on the map, and average
pooling by downgrading the map resolution (i.e. by going
to lower Nside parameter). We refer to Krachmalnicoff &
Tomasi (2019) for additional details on how the algorithm
works, as well as its advantages and disadvantages. In this
work, we use NNhealpix in combination with the public
keras python package3 to build our deep CNN architec-
ture, and to perform training, validation and testing.

The first part of our CNN, performing image filtering,
consists of four CNN building blocks, as illustrated in Fig-
ure 3. We accept Nmap input maps, which in our case rep-
resent one or two frequency channels and Stokes Q and U

maps, hence Nmap = 2 or 4. Each convolutional layer intro-
duces 32 filters with 9 trainable pixel weights, respectively,
and is followed by a Rectified Linear Unit (ReLU) activation
layer. Mathematically, this means each image pixel pi un-
dergoes a linear transformation f followed by a nonlinear
transformation g

pi 7! p
0
i = (f � g)(pi) , (2)

f(pi) = piw0 +

Nneigh(i)X

j=1

pkj(i)wj , (3)

g(x) ⌘ max(0, x) , (4)

2 https://github.com/ai4cmb/NNhealpix
3 https://keras.io
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Fig. 1. SRoll2 data products of the Planck Q and U maps at
frequencies 100 GHz and 143 GHz, post component separation,
used in this work, displayed in Galactic coordinates.

Fig. 2. Smoothed version of the SRoll2 sky masks at sky frac-
tions 50% and 60% used in this paper, displayed in Galactic
coordinates.

2.5. Masks

At low Galactic latitudes, the Milky Way emits polarized
foreground radiation which dominates the CMB signal in
intensity and polarization. Even after component separa-
tion, residuals of this emission needs to be excluded from
the analysis to avoid biasing cosmological analyses. We
therefore apply masks to all maps described in the previ-
ous subsections. We consider two of the binary polarization
masks published in Pagano et al. (2020), retaining sky frac-
tions of fsky = {50%, 60%}. We smooth them with Gaus-
sian beams of corresponding FWHM of {15�, 16�}, and ap-
ply a binary threshold, setting all pixels with a value larger
than 0.5 to one and all others to zero. This procedure allows
us to avoid fuzzy borders and mitigate groups of isolated
masked pixels. The smoothed masks are shown in Figure 2.
Our baseline mask in this paper is the fsky = 0.5 smoothed
mask, as it retains enough large-scale information to con-
strain ⌧ , but avoids excessive levels of foregrounds in the
Galactic plane.

3. NN inference

In this work, we use CNNs to build simulation-based empir-
ical models to perform cosmological inference. In the follow-
ing, we describe our CNN implementation and give details
on the procedures applied to train and test our model on
simulations.

Fig. 3. Schematic of the convolutional layers of the neural net-
work used in this paper. This represents the first part of the
architecture, performing image filtering.

3.1. CNN architecture for ⌧ estimation

CNNs are the industry standard of pattern recognition in
2-dimensional images, performing both classification (e.g.,
identifying families of objects) and regression tasks (e.g.,
estimating continuous parameters on maps). The success
of CNNs in extracting low-dimensional information from
visual input is due to a multi-layer image filtering algo-
rithm. This typically involves searching for distinct sets of
local features in the original image (through convolution)
and compressing the data (through so-called pooling lay-
ers), going to lower and lower resolution, before inferring
the desired summary statistic.

In our case, we want to retrieve information from
data projected on the sphere, requiring convolutions on
the spherical domain. To this end, we make use of the
NNhealpix2 algorithm which allows to build deep spheri-
cal CNNs taking advantage of the HEALPix tessellation. In
particular, NNhealpix performs convolution by looking at
the first neighbors for each pixel on the map, and average
pooling by downgrading the map resolution (i.e. by going
to lower Nside parameter). We refer to Krachmalnicoff &
Tomasi (2019) for additional details on how the algorithm
works, as well as its advantages and disadvantages. In this
work, we use NNhealpix in combination with the public
keras python package3 to build our deep CNN architec-
ture, and to perform training, validation and testing.

The first part of our CNN, performing image filtering,
consists of four CNN building blocks, as illustrated in Fig-
ure 3. We accept Nmap input maps, which in our case rep-
resent one or two frequency channels and Stokes Q and U

maps, hence Nmap = 2 or 4. Each convolutional layer intro-
duces 32 filters with 9 trainable pixel weights, respectively,
and is followed by a Rectified Linear Unit (ReLU) activation
layer. Mathematically, this means each image pixel pi un-
dergoes a linear transformation f followed by a nonlinear
transformation g

pi 7! p
0
i = (f � g)(pi) , (2)

f(pi) = piw0 +

Nneigh(i)X

j=1

pkj(i)wj , (3)

g(x) ⌘ max(0, x) , (4)

2 https://github.com/ai4cmb/NNhealpix
3 https://keras.io

Article number, page 4 of 13

z

τ = 0.0583 ± 0.078
τ = 0.0577 ± 0.054
τ = 0.0593 ± 0.059

τ = 0.0579 ± 0.082
τ = 0.0566 ± 0.062
τ = 0.0588 ± 0.063

• High level of agreement with cross-spectrum likelihood value, but with ~30% larger 
errorbars


• Optimization of NN architecture and procedure needed to improve


• Combination with other dataset is possible (no need of a common data model, 
just simulations)


• Application of NN to real data is challenging!!!!!!!


Pagano et. al 2020



Simulations with NNs
• Inference in Cosmology relies on the existence of large number of simulations 


• On going effort in trying to take advantage of ML to generate simulations more efficiently, 
enhance exiting ones while learning physical properties/correlations. 

Andrianomena, S. et al. https://arxiv.org/abs/2303.07473

https://arxiv.org/abs/2303.07473


CMB observations and foregrounds

• Galactic foregrounds are the main 
contaminant to CMB observations in 
polarization


• we have FG data only at angular 
scale > 1°


• Important to understand the impact 
of Non-Gaussian sub-degree 
foreground emission on lensing 
reconstruction, de-lensing.




?

GANs to simulate small scale foregrounds
i. Train Neural Networks to learn the statistics of foregrounds at the sub-degree scale 

in total intensity (in the regions where we have enough sensitivity)

ii.Reproduce the same statistics starting from large scales in other regions of the sky 
and in polarization

Training

Application
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Erratum: “ForSE: A GAN-based Algorithm for Extending CMB Foreground
Simulations to Subdegree Angular Scales” (2021, ApJ, 911, 1)
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In the published article we used Minkowski functionals, 0, 1, and 2 (Mantz et al. 2008), to analyze the statistical properties of
small-scale structures produced by our generative adversarial network (GAN)-based Foreground Scale Extender (FORSE) algorithm6.
The code used to produce these functionals contained an error that led to it considering only a portion of the input images in the
computation. As a result, Figures 4 and 7 in the published article were impacted, and corrected versions are provided in Figures 4 and
7, respectively. The superposition of the Minkowski functional (0, 1, 2) computed from the small-scale features generated by the
GAN and those obtained from the real total intensity observations are at the level of (64%, 61%, 60%) for Stokes I, (60%, 61%, 62%)
for Q, and (64%, 62%, 63%) for U maps, respectively. Despite the lower values obtained in comparison to the previous version, these
results still demonstrate the ability of FORSE to generate highly non-Gaussian features, as previously concluded. This is especially
clear in the case of polarization, as shown in Figure 7, where the distribution of the functionals from the generated maps (orange) is
much closer to the target distribution (black lines) than to that of a Gaussian field (green).

We thank Viraj Manwadkar and Susan Clark for finding the error in our computation of Minkowski functionals and Jian Yao for
correcting and accelerating the code.

The Astrophysical Journal, 947:93 (2pp), 2023 April 20 https://doi.org/10.3847/1538-4357/acc9c0
© 2023. The Author(s). Published by the American Astronomical Society.

Figure 4. Corrected version of Figure 4 in the published article, showing Minkowski functionals (0, 1, 2) as a function of the threshold ρ, for ~mSS
real (blue) and

~mSS
mock (orange) for the case of total intensity dust maps. The functionals are computed for the 350 patches used to train the GAN and we report the mean (dashed lines)

and 1σ deviation (shaded areas) of the distributions.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

6 https://github.com/ai4cmb/ForSE
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GANs to simulate small scale foregrounds

• Polarization full sky map with 
stochastic non-Gaussian small scales 
up to 3 arcmin



Concluding remarks

• ML offers diverse applications in cosmology, with the potential of 
enhancing data analysis efficiency for upcoming experiments . 


• The field is currently in an exploratory phase. Feasibility tests are 
ongoing, but real-world application on data is limited.


• Progress from simulation success to reliable data outcomes is 
challenging.


• Complementary tool, not yet revolutionary


