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Some numbers

source: NASA/ADS

“Bayesian” in abstract

M refereed M non refereed

1.6k
1.4k
1.2k
1k
800
600
400
200

“Neural Networks” in abstract

M refereed M non refereed

2k
1.5k
1K
500
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CMB: Large Scale Structure:

‘simple”, almost perfectly Gaussians...buf Complex signal, involving highly non linear
faint and highly contaminated ohysical process

(foregrounds and instrumental systematics)




CMB experiments Early Universe - faint signal

SIMONS

" OBSERVATORY

Next Generation CMB Experiment

Large Scale Structure - complex signal
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How to fully exploit datae

Are current methodologies sutficient, given
fthe amount of data, the signal complexity
and the precision we want fo achievee



Standard way of analyzing data

Definition and
computation of
summary statistics

Machine Learning have the potential to help in all these steps (except
theory) by being more efficient or faster than traditional methods



Definition and

jisel Emulators

statistics

Bl cosmopower
planck 2018 chains (camb)

e Algorithms that approximate the oufputs of
computationally expensive models (Einstein-Boltzmann
codes, e.g CAMB/CLASS) at significantly lower
computational costs.
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e Offen based on simple Neural Networks architectures
(fully-connected, few layers)

e Cfficient way fo considerably speed up the sampling of
parameter’s space in standard MCMC inference

Nsveo—

. ff. f e Already proved to be a valuable tfool also on analysis of
::‘::‘::/:/\ real dafta.

Bolliet, B et al. 2023, https://arxiv.org/abs/2303.01591



https://context.reverso.net/traduzione/inglese-italiano/considerably
https://arxiv.org/abs/2303.01591

Definifion of the ML-based/likelihood free
inference

® No need to define and compute summary stafistics from the data, in principle no loss of information

and inference

® No need of an analytical likelihood model, trained only on simulations

NlustrisTNG — > IlustrisTNG MustrisTNG — > SIMBA

® Potfentially powerful for both LSS (complex non-Gaussian
signal) and CMB (Gaussian signal, but highly o
contaminated by non-Gaussian foregrounds and 20
Insfrumental systematic effects) g o
® Many different implementations, mostly applied, tested e
and validated on simulations “los
® Application to real data still lacking! 5 0551 T Ny e
;_go.so- N oy tﬂ Cot
E L
0.6 0.7 Tlf)lfth 0.9 1.0 0.6 0.7 T:lfth 0.9 1.0

Villaescusa-Navarro, F et al. https://arxiv.org/abs/2109.09747



https://arxiv.org/abs/2109.09747

Inference of the optical depth to reionization 7 from Planck
CMB maps with convolutional neural networks

DE
L

Kevin Wolz, Nicoletta Krachmalnicoft, Luca Pagano

https://arxiv.org/abs/2301.09634

Motivations:

e One of the first work in CMB field that robustly applies likelihood-free inference fully
based on Convolutional NNs to real, non ideal, datal

e !csted the applicability of this approach on the estimation of the optical depth to
relionization,

e ' /mpactsthe very large angular scales of CMB E-modes, largely affected by
INnstrumental systematics and Foreground residuals

e [Irstinsfructive test betfore applying the method to primordial B-modes for future
experiments


https://arxiv.org/abs/2301.09634

Planck maps and r estimates

e Flanck maps at 100 and 143 GHz are known to contain significant level of residual systematic
effects (mainly due to T-to-P leakage) at large angular scales

e Although mitigated by the opfimization of the map making procedure (e.g. Sroll2 maps), they
cannot be considered negligible

® WMAP (2012)

o Planck (2013)

o Planck-LFI (2015)

o Planck (2015)

Planck (2016)

@ WMAP+LFI (2018)

Planck (2018)

Planck-HFI (2019)

® WMAP+LFI (2020)

Planck (2020)

U —

0.04 006 008 010 012  0.14
Reionization Optical Depth (T)

® These residual non-Gaussian signals are hard to be analytically modeled

® Current constraints on z are obtained from an empirical likelihood based on cross-spectra



NN approach

e LCsfimate r with convolutional NN directly from maps (without computation of
power spectra), combining information from multiple channels

e NoO need of alikelihood model, but only large set of simulations to train the NN

»CMB + Gaussian correlated noise (from Planck covariances)

® Two types of simulations:
yP »CMB + Gaussian + Systematics (limited to 500 realizations!)

e Convolution of the sphere, using the NNhealpix algorithm, since we are dealing
with super-degree angular scales




Results on simulations

® NN frained on Gaussian simulations (CMB + Gaussian correlated noised)

aving one channel (100 G

Single channel tested
on Gaussian sims:
unbiased estimation

~

-~

Two channels tested
on (Gaussian sims:
reduced error

0.04

z) or two channels input (100 and 143 GHz)

Single channel tested
on sims with systematics:
highly biased results

i

train on 143 GHz
mmm SRoll2 test sims

T=0.0738+0.0076

train on 143 GHz
mmm Gaussian test sims
T=0.0608 = 0.0067

il

0.08 0.04

train on 143+100 GHz
mwom Gaussian test sims
T=0.0600 = 0.0059

0.08

train on 143+100 GHz
wom SRoll2 test sims

T=0.0609 +0.0070

0.06 0.08 0.04  0.06 0.08\
T prediction

Two channel tested

on sims with systematics:

almost unbiased
results!



Results on simulations

Gaussian training
m input T=0.05
T=0.0536 +0.0067

-

0.02

Gaussian training
~mm input T=0.06
T=0.00609 =0.0070

o

SRoll2 retraining
mam input T=0.05
T=0.0508 £0.0091

.,

0.02

 —0.02

SRoll2 retraining
s input T=0.06
T=0.00606 +=0.0088

.

—0.02 0.02 —0.02 0.02
Gaussian training SRoll2 retraining
input 7= 0.07 input T=0.07

T=0.0690+0.0071 T=0.0707 = 0.0087

' -0.02 0.00 0.02 ' -0.02 0.00 0.02
T prediction — truth

Arriving to fully unbiased results on maps
that Include systematic effects requires to
INnclude those systematics in the fraining

procedure

Limited by the number of realizations
(only 500)

Minimal retraining procedure:

m Starfing with Gaussian NN we use 400
realization of systematics to update the

NN weight

m Update must be large enough to arrive 1o
unbiased results but not too big to destroy
what already learnt



Results on Planck data

Pagano et. al 2020

Gaussian Cy SRoll2
" training ® likelihood ¢ retraining
7 = 0.0583 £ 0.078
B — T —— = 0.0577 £0.054

7 = 0.0593 *= 0.059

| 7=0.0579£0.082
—_——— 7 = 0.0566 + 0.062

*
7 = 0.0588 = 0.063

0.0500 0.0525 0.0550 0.0575 0.0600 0.0625 0.0650
T+ (1) 4

e Highlevel of agreement with cross-spectrum likelihood value, but with ~30% larger
errorars

e COpfimization of NN architecture and procedure needed to improve

e Combinafion with other dataseft is possible (no need of a common data model,
just simulations)



Theory and

Simulations with NNs

simulations

® Inference in Cosmology relies on the existence of large number of simulations

® On going effort in trying to take advantage of ML to generate simulations more efficiently,
enhance exiting ones while learning physical properties/correlations.

Input X Target Y  Predicted Y

Mcdm-HI

Mcdm-B

Andrianomena, S. et al. https://arxiv.org/abs/2303.07473


https://arxiv.org/abs/2303.07473

CMB observations and foregrounds

Variance in CMB map [pK?]
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Galactic foregrounds are the main
contaminant to CMB observations in
polarization

we have FG data only at angular
scale > 1°

Important fo understand the impact
of Non-Gaussian sub-degree
foreground emission on lensing
reconstruction, de-lensing.



GANs to simulate small scale foregrounds

|. Train Neural Networks to learn the statistics of foregrounds at the sub-degree scale
INn fotal intensity (in the regions where we have enough sensitivity)

HFI 1°

Training

Application

0.0016
I 0.0014

0.0012

- 0.0010
- 0.0008

- 0.0006
0.0004
0.0002
0.0000

. Reproduce the same statistics starting from large scales in other regions of the sky
and in polarization
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GANs to simulate small scale foregrounds ...
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e Iolarization full sky map with
stochastic non-Gaussian small scales
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Concluding remarks

e ML offers diverse applications in cosmology, with the potential of
enhancing data analysis efficiency for upcoming experiments .

e 'he fieldis currently in an exploratory phase. Feasibllity tests are
ongoing, but real-world application on data is limited.

@ Progress from simulation success to reliable data outcomes is
challenging.

e Complementary tool, not yet revolutionary



