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The problem

This year we can celebrate the 40-th year anniversary of the Shaing-Callen

formula for the collisionless asymptotic of bootstrap current in general

toroidal fields with embedded flux surfaces. Three independent derivations

lead to the same or almost the same result:

• K.C.Shaing and J.D.Callen, Phys.Fluids 26 (1983) 3315

• A.H.Boozer and H.J.Gardner, Phys.Fluids B 2 (1990) 2408

• P.Helander, J.Geiger, H.Maassberg, Phys.Plasmas 18 (2011) 092505

All of them either assume or allow for 1/ν-regime but the result

is not reproduced by numerical codes in any device in this regime.

Here and below we focus on mono-energetic bootstrap coefficient D31

⟨j∥B⟩ = −nαD31A1, A1 =
1

nα

∂nα

∂r
− eαEr

Tα
− 3

2Tα

∂Tα

∂r

and the Ware-pinch coefficient D13 as its Onsager-symmetric counterpart

linking density flux to A3 = eα⟨E∥B⟩/(Tα⟨B2⟩) from the parallel electric field.
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D∗
31 for various Er (C.D.Beidler et al, Nucl.Fusion 51 (2011) 076001)

LHD HSX

NCSX W7-X

Normalized D∗
13 = D13/Dtok

13 . Blue - 1/ν regime (Er = 0).
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Observations and yet another attempt

Observations in the previous slide can be summarized as follows

• In the absence of Er, convergence to Shaing-Callen limit is not seen

in any of the configurations in the range ν∗ = Rν/(ιv) ≥ 10−6.

• In the presence of Er, trend to converge appears, increasing with Er.

Modelling by NEO-2 in the 1/ν-regime (W.Kernbichler et al, Plasma Phys.

Control. Fusion 58 (2016) 104001):
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Convergence of D∗
13 is not reached in the collisionality range ν∗ ≥ 10−9.
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Mono-energetic equation, transport coefficients

Linear (local) drift-kinetic equation for the computation of transport

coefficients Dij is of a general form

v∥h · ∇gk − 4νv∥
∂

∂J⊥

(
J⊥v∥

B

∂gk

∂J⊥

)
= qk,

where gk = gk(r, J⊥, w), h = B/B is the unit vector along the field,

J⊥ = v2⊥/B is the perpendicular invariant (magnetic moment),

w = mαv2/2 + eαΦ is total energy and ν is collision frequency.

The sources corresponding to thermodynamic forces A1 (gradient drive)

and A3 (parallel electric field drive), are

q1 = −vrg ≡ −vg · ∇r, q3 = Bv∥ ≡ vg ·B,

where vg is the guiding center velocity.

Phase space integrals (moments and flux surface average) of q†j yield

fluxes, integrals of products gkq
†
j yield transport coefficients Dkj = Djk.
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Normalized variables, glossary

In the following we use normalized variables and the kinetic equation

multiplied by the phase space Jacobian J̄ = B/(|v∥|Bφ) corresponding to

the toroidal angle φ being the field line parameter,

L̂gk ≡ σ
∂gk

∂φ
− ∂

∂η

(
Dη

∂gk

∂η

)
= sk, Dη ≡ |λ|η

lcBφ

where lc = v/(4ν) is the mean free path, and the rest notation is

NEO-2 HGW

field line parameter φ l

pitch parameter v∥/v λ ξ

normalized invariant v2⊥/(v2B) η λ

contra-variant field component Bφ B

parallel velocity sign σ σ

Table 1: Glossary
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Asymptotic solutions at low collisionality

We obtain now asymptotic solutions for both, direct (A1 driven) and

adjoint (A3 driven) problems using a standard procedure for equations

with a rapidly varying phase. We look for the solution of our equation,

σ
∂gσ

∂φ
− ∂

∂η

(
Dη

∂gσ

∂η

)
= sσ ,

in the form of the expansion in collision frequency, B2Dη ≪ 1, (or,

equivalently, in bounce time),

gσ(φ, η) = gσ−1(η) + gσ0 (φ, η) + gσ1 (φ, η) + . . .

where each expansion term satisfies independently in the passing region

periodicity condition on the field line, gσm(φ0, η) = gσm(φN , η), and in the

trapped region the continuity condition at the turning points φ±(η) where

1−B(φ±(η))η = 0, i.e. g+m(φ±(η), η) = g−m(φ±(η), η). For gσ−1 boundary

conditions mean that it must be even in the trapped region g−−1 = g+−1.
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Direct problem: effective ripple

Now we have to split our two problems and solve first the direct, A1 driven

problem with s1, leading for trapping class k to

∂

∂η

ηIk

lc

∂g
σ(k)
−1

∂η

 =
1

3

∂Hk

∂η
,

and gσ−1 = 0 in the passing region. Geodesic curvature drives transport with

Ik(η) = 2

φ+
k
(η)∫

φ−
k
(η)

dφ
|λ|
Bφ

=

∮
dφ

λ

Bφ
=

∮
dl

λ

B
,

Hk(η) = −2

φ+
k
(η)∫

φ−
k
(η)

dφ
|λ|
Bφ

|∇r|kGρL

(
3 + λ2

)
= −

∮
dl

λ

B
|∇r|kGρL

(
2 + λ2

)
.

|∇r|kG =
1

B
∇r × h · ∇B.
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Direct problem: effective ripple

Formal integration from the bottom of the local well η = 1/Bk
min where no

flux is allowed, ∂gσ−1/∂η = 0, results in

∂g
σ(k)
−1

∂η
=

lcHk

3ηIk
,

which gives D11 ∼ ε
3/2
eff with effective ripple εeff (Nemov, 1999). This

solution satisfies flux conservation in the boundary layers between classes,

Ik+2

∂g
σ(k+2)
−1

∂η
= Ik

∂g
σ(k)
−1

∂η
+ Ik+1

∂g
σ(k+1)
−1

∂η
.
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Parallel current density: Shaing-Callen limit

Parallel current density needs only the derivative of ḡσ0

j∥

B
= Cp

∑
σ

1/B∫
0

dη gσ0 = Cp

∑
σ

1/B∫
0

dη

(
gσ0 − ḡσ0 − η

∂ḡσ0
∂η

)
,

where Cp = 3eαnαTαA1
4mαv

depending on plasma parameters. Explicitly,

j∥

B
=

2Cp

3

1/B∫
0

dη

 ∂

∂η

φ∫
φbeg

dφ′ |λ|
Bφ

|∇r|kGρL

(
3 + λ2

)

+
∂

∂η
Θ(η − ηb)

Hk

Ik

φ∫
φbeg

dφ′ |λ|
Bφ

+ Θ(ηb − η)η

 φN∫
φ0

dφ
|λ|
Bφ


−1

φN∫
φ0

dφ
|λ|
Bφ

∂2

∂η2

φ∫
φ0

dφ′ |λ|
Bφ

|∇r|kGρL

(
3 + λ2

) .
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Comparison to numerical experiment

In the present derivations, explicitly (direct derivation as in original of

Shaing and Callen) or implicitly (adjoint derivation, see below) one

assumes a closed field line after a finite number of turns. Let us

reproduce exactly this case (NEO-2 works exactly this way) using a

rational field line in a circular rippled tokamak (with up-down symmetry),

B(ϑ, φ) = B0(ϑ) + εM cos(nφ),

and a rational ι. We take a field line starting (and ending) at global

maximum - integrals of geodesic curvature |∇r|kG times any function of B

are zeros along this field line.
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Odd part of the distribution function driven by A1 (direct)

Case ι = 0.25, n = 3 and εM = 0.05:

Parallel flows within class transition boundaries layers show up with

reduced ν∗. No flow in the trapped-passing boundary layer.
12 Albert et al. European Fusion Theory Conference in Padua, October 2023



Parallel current by the distribution function driven by A1

First three plots -
∫ ηb
η dga (value at η = 0 is parallel current density).

Last plot - ga, Shaing-Callen limit is reached when the last boundary layer

separates from the trapped-passing boundary (vertical dashed black line).
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Convergence in various cases of ι and εM
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Normalized bootstrap coefficient D∗
31 from NEO-2 (blue) and its

Shaing-Callen value (red).

Upper panel: left - ι = 1/7, εM = 0.1, right - ι = 3/7, εM = 0.1.

Lower panel: left - ι = 4/9, εM = 0.1, right - ι = 4/9, εM = 0.2
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Adjoint derivation

In the derivation of Ware pinch coefficient D13 for fluxes driven by A3, the

leading order solution is non-zero only in the passing region

gσ−1 = ση

φN∫
φ0

dφ
B2

Bφ

ηb∫
η

dη′

 φN∫
φ0

dφ Dη


−1

= σlc

ηb∫
η

dη′
〈
B2
〉〈

|λ|
〉 .

The first order equation for g1 is not needed for gσ0 since it is an even

function, and any even ḡσ0 (η) does not change radial particle flux and

parallel current. We split the solution of Helander (2011) in two parts,

gσ0 = gs0 + gc0, with the first part driven directly by the source term,

gs0 = σ

φ∫
φ0

dφ′s3 =

φ∫
φ0

dφ′ B
2

Bφ
,

and the second one driven by the collision term,

gc0 = − ∂

∂η

Θ(ηb − η)
η⟨B2⟩
⟨|λ|⟩

φ∫
φ0

dφ′ |λ|
Bφ

.
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Even part of the distribution function driven by A3

Local wells (“off-set wells”) which touch the trapped-passing boundary

layer tend to take the value of distribution function in the boundary layer.

This off-set disappears when Shaing-Callen limit is reached.
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Multiple off-set (drive by A3)

The same as before for ι = 0.4. Two different off-set well types show up

simultaneously. Off-sets have different dependencies on collisionality.
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Asymptotic solution and comparison to NEO-2

Trapped particle distribution driven by passing particles entering through

the red boundary is given at the boundaries of the off-set well by a solution

of Wiener-Hopf type equation set driven by nonzero ∆η.

Asymptotics by propagator method reproduces numerical off-set

distribution by NEO-2 (black), 1/ν scaling (solid blue), 1/
√
ν scaling

(dashed blue) and off-set computed via the solution of the Wiener-Hopf

equation set (red).

Seems that we understand the off-set.
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Off-set at irrational flux surfaces

Off-set domains on three field lines starting and ending in vicinity ∆ϑ of

the global maximum (dashed ellipse) such that B −Bmax in this vicinity

satisfies the condition |B −Bmax|/B2
max = ∆η ≤ δηmain. Downward shifted

(blue) field line is fed primarily by “particles” from the main region while

upward shifted (red) field line is fed by anti-particles. The symmetric

(magenta) field line is fed by equal amount of both (no off-set).

Both, blue and red field line produce the same off-set in the bootstrap

current because the geodesic curvature (background color) is

anti-symmetric with both angles.
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Off-set of bootstrap coefficient

Off-set of Ware pinch coefficient is obtained by integrating source s1 over

the off-set domain where g0 = goff = const. Useful representation is via the

bounce averaged velocity:

D̄off
13 = − goff(

φmain
r − φmain

l

) ∑
k ∈ off

1/B
(k)
min∫

ηb

dη τbk⟨vrg⟩bk,

where τbk and ⟨vrg⟩bk are bounce time and bounce averaged velocity of the

trapping class k from the off-set domain. In the devices with low ⟨vrg⟩b,
off-set is less significant.

Evaluation of this integral requires the number of turns N (orbit length) to

reach the vicinity of the initial maximum B.
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Length of the off-set field line segment and the

divergence of D13 = D31 in the 1/ν regime

With reduced collisionality, ν∗ → 0, local off-set wells are deactivated and

rather long segments of field line making N turns over the off-set domain

are relevant. Estimating the number of turns as

δηmain = Aoδηoff ∼ 1

B2

∂2B

∂ϑ2
∆ϑ2 ∼ ηbεM∆ϑ2 ∼ ηbεM

(2π)2

N2
,

we get a nonlinear equation for N with (Helander, Parra, Newton, 2017)

N ∼

 (2π)4ε
3/2
M

Aoν∗

1/5

.

The contribution of the offset well to the normalized coefficient scales as

D̄off
13

D̄tok
13

∼ ι (AoεM )3/10

5ν∗1/5
log

 (2π)4ε
3/2
M

Aoν∗

 .
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Attenuation factor by precession (electric or magnetic)

Resulting equation,
∂g0

∂y
=

∂2g0

∂x2
,

is driven by boundary condition at the top of the off-set well (fixed by the

solution for the 1/ν regime), and is localized in the range |x| ∼ |y| ≤ 1 for

strong enough electric fields. Effectively, it reduces the off-set region to

the vicinity of the trapped-passing boundary (like in
√
ν regime), leading to

attenuation of the offset for the 1/ν regime by a factor

δE ∼ A
9/40
o ε

−3/20
M ν

3/5
∗

(
v

RωE

)1/2

.

Thus, the normalized bootstrap coefficient scales as

D̄off
13

D̄tok
13

∼ ι

5
A

21/40
o ε

3/20
M ν

2/5
∗ log

 (2π)4ε
3/2
M

Aoν∗

( v

RωE

)1/2

,

i.e. it converges with ν∗. Note that for a single off-set well dominating in

some range δE ∝ ν
1/2
∗ , because factor ν

1/10
∗ comes from switching of wells.
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Comparison with DKES (Helander 2011)

Fit from single point works, but not for strong Er at high ν∗. There the

“usual” tokamak-type off-set can play a role which is not sensitive to Er.
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Conclusions

• Asymptotic behavior of bootstrap coefficient beyond the

Shaing-Callen limit has been identified. The offset ...

– ... diverges in the 1/ν regime with ν∗−1/5.

– ... disappears with orbit precession (e.g. due to Er), scaling with

ν
2/5
∗ (general) or ν

1/2
∗ (single ripple).

• The offset is small for configurations with low bounce-averaged drift

(quasi-symmetric).

• Alignment of B field maxima should help to get rid of the offset.

Outlook: Couple two fast codes – bounce-averaged code including Er

(e.g. KNOSOS) in trapped region with full drift-kinetic code NEO-2.

Thank you for your attention!
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