Physics Informed Neural Networks (PINNs) for MHD Modelling

Hubert Baty, ObAS, Université de Strasbourg, France

&

Vincent Vigon, IRMA (INRIA & Tonus team), Université de Strasbourg, France

Thanks to Emmanuel Franck & Victor-Michel Dansac (IRMA)

Université de Strasbourg

AMRI

Ínría_

What is it about?

- PINNs: optimizations deep learning (DL)
 based methods for academic & industrial research
- -> recent strong surge of interest in many fields!
- PINNs seamlessly incorporate data and physical laws (ODEs or PDEs) in a unified way
- -> application to many different problems

See review by Karniadakis et al., Nature reviews 2021

Presentation plan

- Basics of PINNs
- Application to MHD equilibria
- Application to MHD reconnection

Potentiality of PINNs:
aim to test advantages/drawbacks
vs traditional solvers

Conclusions and prospectives

- Differential equation in a bounded domain:
 - PDE in residual form:

$$\mathcal{F}\left[u(\boldsymbol{x}),\boldsymbol{x}\right]=0$$

Differential operator

- Define a data set of N_c collocation points:
 - => physics-based loss function:

$$\mathcal{L}_{\mathcal{F}}(\theta) = \frac{1}{N_c} \sum_{j=1}^{N_c} \left| \mathcal{F}[u_{\theta}(\mathbf{x}_j), \mathbf{x}_j] \right|^2$$
mean squared error

 θ : parametrization

a differentiation tool is needed

• Minimization method to find the optimal solution => $u_{\theta}(x)$

Collocation points & boundary points

- Differential equation in a bounded domain:
 - Dirichlet boundary conditions (BCs) (Neumann/Robin conditions are also possible)

- Define a data set of N_{data} boundary points:
 - => Training data loss function:

$$\mathcal{L}_{data}(\theta) = \frac{1}{N_{data}} \sum_{i=1}^{N_{data}} \left| u_{\theta}(\mathbf{x}_i) - u_i^{data} \right|^2$$
nean squared error θ : parametrization

mean squared error

- -> N_{data} can also include the data knowledge of some interior points ...
- Minimization method using a weighted total loss to find the optimal solution => $u_{\theta}(x)$

$$\mathcal{L}(\theta) = \omega_{data} \mathcal{L}_{data}(\theta) + \omega_{\mathcal{F}} \mathcal{L}_{\mathcal{F}}(\theta)$$
weights

Minimization using a <u>feed-forward neural network</u> -> universal non-linear approximator

knowledge of u_i^{data} at x_i

 $u_{\theta}(\boldsymbol{x}) = (\mathcal{N}^{(L)} \circ \mathcal{N}^{(L-1)} ... \mathcal{N}^{(0)})(\boldsymbol{x})$

- Finding map between inputs and output

- Recursive way -> sequence of non linear functions

Minimization using a feed-forward neural network -> universal non-linear approximator

σ: Activation function -> 'tanh'

$$\mathcal{N}^{(l)}(x) = \sigma(W^{(l)}\mathcal{N}^{(l-1)}(x) + b^{(l)}) \quad u_{\theta}(x) = (\mathcal{N}^{(L)} \circ \mathcal{N}^{(L-1)}... \mathcal{N}^{(0)})(x)$$

$$u_{\theta}(\boldsymbol{x}) = (\mathcal{N}^{(L)} \circ \mathcal{N}^{(L-1)} ... \mathcal{N}^{(0)})(\boldsymbol{x})$$

weight matrices and biases: $m{ heta} = \{m{W}_{\cdot}^{(l)}m{b}^{(l)}\}_{l=1,L}$

$$\theta = \{\boldsymbol{W}_{,}^{(l)}\boldsymbol{b}^{(l)}\}_{l=1,L}$$

-> trainable parameters

Hidden layers -> affine maps & nonlinear activation function Units: artificial neurons -> brain-inspired

Minimization using a feed-forward neural network for PINNs

 σ : Activation function -> 'tanh'

$$\mathcal{N}^{(l)}(\boldsymbol{x}) = \sigma(\boldsymbol{W}^{(l)} \mathcal{N}^{(l-1)}(\boldsymbol{x}) + \boldsymbol{b}^{(l)})$$

$$\mathcal{N}^{(l)}(x) = \sigma(\mathbf{W}^{(l)}\mathcal{N}^{(l-1)}(x) + \mathbf{b}^{(l)}) \quad u_{\theta}(x) = (\mathcal{N}^{(L)} \circ \mathcal{N}^{(L-1)}... \mathcal{N}^{(0)})(x)$$

weight matrices and biases:
$$\theta = \{ oldsymbol{W}_{,}^{(l)} oldsymbol{b}^{(l)} \}_{l=1,L}$$

A gradient descent algorithm: I_r is the learning rate

$$\theta_{i+1} = \theta_i - l_r \nabla_{\theta} \mathcal{L}(\theta_i)$$
 $\theta^* = \underset{\theta}{\operatorname{argmin}} \mathcal{L}(\theta)$

Parameters are iteratively calibrated during the training process

- Many pitfalls: regions with plateau (zero gradient), multiple local minima, too high or too low learning rate, ...
 - => Efficient optimizers are needed (a stochastic one is used)!
- A gradient descent algorithm: I_r is the learning rate

$$\theta_{i+1} = \theta_i - l_r \nabla_{\theta} \mathcal{L}(\theta_i) \qquad \qquad \theta^* = \underset{\theta}{\operatorname{argmin}} \, \mathcal{L}(\theta)$$
a differentiation tool is needed

A complete (iteration) pass across the network is called **epoch** in ML/DL

- Python libraries for deep learning are very efficient and optimized
 - Pytorch and Tensorflow (used in this work)
 - Different optimizers for gradient descent (Adam is used)
 - Automatic differentiation is used for gradient descent (w.r.t. θ) and for differential operator (w.r.t. inputs) => contrary to traditional methods the derivatives are computed exactly!

- Many PINNs-variants
 - Method above -> 'vanilla-PINNs', popularized after Raissi et al. (2019)
 - BC's can be imposed with 'hard constraints' by specific trial functions for the solution -> see Lagaris (1998), but difficult to use for non cartesian geometry and/or non homogeneous conditions

Axisymmetric ideal MHD (tokamak, ...) equilibria

$$R\frac{\partial}{\partial R}\left(\frac{1}{R}\frac{\partial\psi}{\partial R}\right) + \frac{\partial^2\psi}{\partial z^2} = -\mu_0 R^2 \frac{\partial P}{\partial \psi} - F\frac{\partial F}{\partial \psi}$$

-> Grad-Shafranov (GS) equation

 ψ is the poloidal flux, $F(\psi)$ is the net poloidal current, and $P(\psi)$ is the thermal pressure

ITER-like equilibria http://homepage.tudelft.nl/20x40/MHDeq.html

PINNs solver (for fixed-boundary problem)

Similar solvers under development: Jang et al. Maryland university 2023, Kaltsas & Throumoulopoulos 2022 (also include toroidal flow effect)

Our equation residual is:
$$\left[R\frac{\partial^2\psi}{\partial R^2}+R\frac{\partial^2\psi}{\partial z^2}-\frac{\partial\psi}{\partial R}\right]+RH(R,z,\psi)=0$$

$$H(R,z,\psi)=\mu_0R^2\frac{\partial P}{\partial \psi}+F\frac{\partial F}{\partial \psi}$$

• Axisymmetric ideal MHD (tokamak, ...) equilibria

$$R\frac{\partial}{\partial R}\left(\frac{1}{R}\frac{\partial\psi}{\partial R}\right) + \frac{\partial^2\psi}{\partial z^2} = -\mu_0 R^2 \frac{\partial P}{\partial \psi} - F\frac{\partial F}{\partial \psi}$$

Solov'ev equilibrium (1) for GS equation

$$H = f_0(R^2 + R_0^2)$$

Exact analytical solution -> for error and for BCs! see Deriaz et al. 2011

$$\psi = \frac{f_0 R_0^2}{2} \left[a^2 - z^2 - \frac{(R^2 - R_0^2)^2}{4R_0^2} \right]$$

$$\partial \mathcal{D} = \left[R = R_0 \sqrt{1 + \frac{2a\cos\alpha}{R_0}}, z = aR_0 \sin\alpha, \alpha = [0:2\pi] \right]$$

- Application using: $f_0 = 1$, $R_0 = 1$, a = 0.5 ($\mu_0 = 1$)

 R_0 , a: major, minor radii

 f_0 : arbitrary factor

Results for Solov'ev equilibrium (1)

- Parameters used:

 $I_r = 2.\ 10^{-4}$, $\omega_{data} = \omega_F = 1$, $N_c = 800$, $N_{data} = 80$ 7 hidden layers with 20 neurons/layer -> **2601 parameters**. ∞ Adam optimizer (stochastic gradient descent) Training stopped after 50 000 epochs

- a few minutes on a single (8 cores) CPU

 ψ –isocontours

Results for D-shaped ITER-like Solov'ev (2) and non-linear equilibria

$$H(R, z, \psi) = (1 - A)R^2 + A$$

See Cerfon & Freidberg 2010 (A = -0.155)

$$H(R, z, \psi) = (AR^2 + B)(1 - \psi)^{0.6}$$

procedure is the same without extra effort!

See Itakagi et al. 2004

Results for other configurations: spherical tokamak (NSTX-like), spheromak, FRC

PINNs: interesting alternatives to classical methods (finite element FE ...)

- -> Easy to handle, meshless methods (collocation & training data sets can be very small)
- -> Once trained, the solution (and derivatives) instantaneously obtained
- -> Could be used in many different ways: adding data knowledge for learning unknown physical terms (inverse problem for profile reconstruction)
 - not done here
- -> The precision is only good/average (but can be ameliorated -> conclusions)
 - Maximum relative error is of order 10⁻⁴ versus 10⁻⁵ 10⁻¹⁰ for finite-element codes see Lee & Cerfon 2015, and Lutjens et al. 1996 (CHEASE code)
 - No scaling laws of the error with the hyperparameters:
 - I_r , number of layers/neurons, N_{data} , N_{c_r} weights

Application to MHD reconnection

- 2D steady-state reconnection
- Craig-Henton exact analytical solutions for incompressible inviscid plasmas in 2D cartesian coordinates
 Craig & Henton ApJ 1995, see also Baty & Nishikawa MNRAS 2016

Square spatial domain [-1, 1]²

$$\boldsymbol{B} = \left(\beta x, -\beta y + \frac{E_d}{\eta \mu} Daw(\mu x)\right) \qquad \boldsymbol{V} = \left(-\alpha x, \alpha y - \frac{\beta}{\alpha} \frac{E_d}{\eta \mu} Daw(\mu x)\right)$$

for $\beta = 0 \Rightarrow$ pure annihilation with a stagnation point flow

$$\mu^2 = \frac{\alpha^2 - \beta^2}{2\eta\alpha}$$
 Dawson function -> $Daw(x) = \int_0^x \exp(t^2 - x^2) dt$

$$0 < \beta < 1$$

 η : resistivity, E_d : reconnection rate

Schematic view (Wikipédia)

Application to MHD reconnection

PINNs code for 2D steady-state reconnection

$$\mathbf{V} \cdot \nabla \mathbf{V} - (\nabla \times \mathbf{B}) \times \mathbf{B} + \nabla P = 0 \qquad \nabla \cdot \mathbf{V} = 0$$
$$\nabla \times (\mathbf{V} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B} = 0 \qquad \nabla \cdot \mathbf{B} = 0$$

-> dimensionless MHD equations

First ever PINNs solver for dynamical MHD ?

- 6 scalar PDEs => 6 physics-based partial loss functions
- 5 scalar variables => 5 output neurons
- Dirichlet BCs for **V** and **B** imposed at boundaries using exact solution

- Parameters used:

$$I_r$$
 = 2. 10^{-4} , ω_{data} = ω_F = 1 , N_c = 700 , N_{data} = 120 (30 per boundary) 9 hidden layers with 30 neurons/layer -> **7716 parameters** <- θ Adam optimizer

Training stopped after 25 000 epochs (40 minutes on a single 8 core CPU)

Schematic view (Wikipédia)

Application to MHD reconnection

Results for 2D steady-state reconnection solution

Maximum absolute/relative error is of order 10⁻³

- Parameters used:

$$E_d = 0.1$$
 , $\beta = 0.5$ and $\alpha = 1$, $\eta = 10^{-2}$

• It works with a reasonable CPU time (less than 1 h) the precision: relative maximum error of order 10⁻³

Conclusions and prospectives

- PINNs offers a complementary approach & perhaps alternative
- Drawbacks: -> possible improvements
- 1. Training can be long/difficult and CPU time consuming = > possible improvements
- GPU acceleration
- Adaptive variants (loss functions with adaptive sampling, optimizers, ...)
- 2. The precision is good/average (not enough for some applications?) -> 2nd order optim.

under development

- Advantages:

- 1. Easy to handle and mesh-free
- 2. Once trained, solutions/derivatives are instantaneously obtained
- 3. Can be used in different ways: promising complementary approach!
 - -> Finding unknown physics (sources terms for equilibria) -> inverse problems in combination with more data
 - -> Solving multiple solutions (equilibrium, and for reconnection)

 under development see Baty (2023) for ODE's

Conclusions and prospectives

- Prospectives
- Exploit reconnection solver -> reconsider other fast reconnection solutions (see Priest & Forbes book 2000)
- Extend to three dimensional MHD equlibria and dynamics
- Extend to time-dependent dynamics (use of data from traditional solvers?)

Thank you for your attention

Bibliography

- PINNs technique to solve PDEs and ODEs
- Raissi et al. 2019, Journal of Computational Physics, 378, 686
- Lagaris et al. 1998, IEEE transactions on neural networks, 9(5), 987
- Karniadakis et al., Nature reviews, 422, 440
- Baty 2023, Astronomy and Computing 44, 100734
- Baty & Baty 2023 (Solving differential equations using physics informed deep learning: a hand-on tutorial with benchmark tests) 2023arXiv230212260B

ODEs

- Grad-Shafranov equation
- Deriaz et al. 2011, ESAIM proceedings 32, 76
- Itagaki et al. 2004, Nuclear Fusion 44, 427
- Cerfon and Freidberg 2010, PoP 17, 032502
- Kaltsas and Throumoulopoulos 2022, PoP 29, 022506
- 2D Magnetic reconnection
- Priest and Forbes 2000, Magnetic Reconnection, book Cambridge University Press
- Craig and Henton 1995, ApJ 450, 280
- Baty and Nishikawa 2016, MNRAS 459, 624

Material presented here is submitted to MNRAS journal (Baty & Vigon 2023)

Backup slides (1)

Backup slides (2)

Magnetic reconnection for different β values (0, 0.25, and 0.75) for η = 10⁻²

Magnetic reconnection for different resistivity η values (10⁻¹ and 10⁻³) for β = 0.5