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What is it about ?

* PINNs: optimizations deep learning (DL)
based methods for academic & industrial research
-> recent strong surge of interest in many fields !

* PINNs seamlessly incorporate data and
physical laws (ODEs or PDEs) in a unified way
-> application to many different problems

PINNSs Classical ML/DL
{ Small data Some data Big data \
Data
Physics

Lots of physics Some physics No physics

See review by Karniadakis et al., Nature reviews 2021
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Presentation plan

e Basics of PINNs

* Application to MHD equilibria
Potentiality of PINNs:

= aim to test advantages/drawbacks
* Application to MHD reconnection vs traditional solvers

e

* Conclusions and prospectives
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Basics of PINNs

Collocation points

* Differential equation in a bounded domain:

- PDE in residual form: F [ux),x] =0

Differential operator A '
* Define a data set of N, collocation points: RIS

=> physics-based loss function:

N

1 2
Lr©) = — ) [FlugCx).x)]
mean squared error = T
@ : parametrization a differentiation tool is needed

* Minimization method to find the optimal solution => u,(x)
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Basics of PINNs

Collocation points & boundary points

Differential equation in a bounded domain: T
- Dirichlet boundary conditions (BCs) y data / Z) S
(Neumann/Robin conditions are also possible) o

“*. .-sst. .

Define a data set of N, boundary points: e T

=> Training data loss function: S s

Ndata ) g ...... . T
dat ot
Liara(6) = | o) — | g
. Ndata l—1 ‘. R - . +
mean squared error 0 : parametrization Tt 6@

-> N, €an also include the data knowledge of some interior points ...

Minimization method using a weighted total loss to find the optimal solution
L(H) - wdataLdata(g) + Wg ‘[47"(0)
L weightsJ
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Basics of PINNs

 Minimization using a feed-forward neural network -> universal non-linear approximator

X=(x,y)|| = - - = | -> Upy(x)

0 : parametrization

knowledge of y data

ug(x) = (NP o NED - NOy(x)

at x;

- Finding map between inputs
and output

- Recursive way -> sequence of non linear functions
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Basics of PINNs

 Minimization using a feed-forward neural network -> universal non-linear approximator

hidden layers

G : Activation function -> ‘tanh’
NO@x) = c(WONTD(x) + bD) |ug(x) = (NP o NV NO)(x)
weight matrices and biases: |§ = {W(l)b(l)}l=1 I

-> trainable parameters

Hidden layers -> affine maps & nonlinear activation function
Units: artificial neurons -> brain-inspired
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Basics of PINNs

 Minimization using a feed-forward neural network for PINNs

Automatic
differentiation minimization

———————————————————————————

hidden layers

! { i
Ug 1= Luud0)

+
ux, 0 i
Uyg (=i L0 (=g
uxx, 0
Uyy,6 => 1(6)

___________________________

o : Activation function -> ‘tanh’

NO@) = c(WONTD () +5P)  |ug(x) = (NP o NED

~ NOYx)

weight matrices and biases: |0 = {W,(l)b(l)h:l,L

* A gradient descent algorithm: / is the learning rate
01 =6, — [,Ve.L(6)) 0" = argmin £L(6)
0
Parameters are iteratively calibrated during the training process
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Basics of PINNs

Learning step

’ll, I
QL
XA T
=y
S
~::.:o'»~'7
(7 ;'o‘ =3 /.

1y

Loss function

Initial value 1 Minimium

0

- Many pitfalls: regions with plateau (zero gradient), multiple local minima, too high or
too low learning rate, ...

=> Efficient optimizers are needed (a stochastic one is used) !

* A gradient descent algorithm: / is the learning rate
01 =0, — Vo L(6)) 6" = argmin L(6)
0
Ta differentiation tool is needed

A complete (iteration) pass across the network is called epoch in ML/DL
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Basics of PINNs

 Python libraries for deep learning are very efficient and optimized
- Pytorch and Tensorflow (used in this work)
- Different optimizers for gradient descent (Adam is used)
- Automatic differentiation is used for gradient descent (w.r.t. &) and for
differential operator (w.r.t. inputs) => contrary to traditional methods the
derivatives are computed exactly !

* Many PINNs-variants
- Method above -> 'vanilla-PINNs’, popularized after Raissi et al. (2019)
- BC’s can be imposed with ‘hard constraints’ by specific trial functions for
the solution -> see Lagaris (1998), but difficult to use for non cartesian
geometry and/or non homogeneous conditions
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Application to MHD equilibria

* Axisymmetric ideal MHD (tokamalk, ...) equilibria

3 (1dy +62¢ ,OP Fa_F
OR\ROR) 072 oy Oy

-> Grad-Shafranov (GS) equation
i is the poloidal flux, F (v) is the net poloidal current,

and P () is the thermal pressure

ITER-like equilibria
http://homepage.tudelft.nl/20x40/MHDeg.html

* PINNs solver (for fixed-boundary problem)

Similar solvers under development: Jang et al. Maryland university 2023, Kaltsas &
Throumoulopoulos 2022 (also include toroidal flow effect)

2 2
Our equation residual is: % + % — Z—"IZ +RHRR,z,¥) =0
H(R,z,¥) = ,UoRza—P + Fa—F

oy " oy
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Application to MHD equilibria

* Axisymmetric ideal MHD (tokamalk, ...) equilibria

AL 0P OF
R uoR?— — F
w( ) P

RAR)" 822 ~ oy oy

* Solov’ev equilibrium (1) for GS equation
H = fo(R* + R})

Exact analytical solution -> for error and for BCs !
see Deriaz et al. 2011

p—

2
0D = [R = Ry \/1 + a;osa/,z =aRypsina,a = [0 : 27r]]
0

R, , a : major, minor radii

- fo: arbitrary factor
- Application using: f,=1, R;=1,a=0.5(yy=1)
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Application to MHD equilibria

* Results for Solov’ev equilibrium (1)

103 P

1071 5

1077 1

1073 1

107# 1

107 ;

10—6 -«

‘“

0 parameters
- Randomly initialized

X—point/

a third set of points

is used to test ->

160 260 360 4(')0 5(')0
Epochs(x102?)

- Parameters used:

=2.10% |, @ypry =

wr=1,N,=800 , Ny, =80

02

-04

04

02

7 hidden layers with 20 neurons/layer -> 2601 parameters, .,

Adam optimizer (stochastic gradient descent) T
Training stopped after 50 000 epochs
- a few minutes on a single (8 cores) CPU 0

-0.2

 —isocontours

PINNSs solution
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Application to MHD equilibria

* Results for D-shaped ITER-like Solov’ev (2) and non-linear equilibria

H(R,z,¥) = (1 -AR* + A H(R,z,¢) = (AR* + B)(1 — )°*
See Cerfon & Freidberg 2010 (A =- 0.155) procedure is the same without extra effort !
e See |takagi et al. 2004

0.4 4

- Lagaris BC (¢ =0)
rectangular domain

0.2 4

Z/Ro

0.0 4

—0.21

—0.4

0.6 050 100 125 15
0.0 02 0.4 0.6 0.8 10 12 RIRo

* Results for other configurations: spherical tokamak (NSTX-like), spheromak, FRC
(Cerfon & Freidberg 2010)
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Application to MHD equilibria

* PINNs: interesting alternatives to classical methods (finite element FE ... )

-> Easy to handle, meshless methods (collocation & training data sets can be very small)
-> Once trained, the solution (and derivatives) instantaneously obtained

-> Could be used in many different ways: adding data knowledge for learning unknown
physical terms (inverse problem for profile reconstruction)

- not done here

-> The precision is only good/average (but can be ameliorated -> conclusions)
- Maximum relative error is of order 10 versus 107 - 10°1° for finite-element codes

see Lee & Cerfon 2015, and Lutjens et al. 1996 (CHEASE code)
- No scaling laws of the error with the hyperparameters:

l., number of layers/neurons, Ny, N, weights
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Application to MHD reconnection

e 2D steady-state reconnection
- Craig-Henton exact analytical solutions for incompressible
inviscid plasmas in 2D cartesian coordinates

Craig & Henton ApJ 1995, see also Baty & Nishikawa MNRAS 2016

Square spatial domain [-1, 1]2

B = (,Bx, —By + —dDaw(,ux)) V = (—a'x, ay — '[—3 —dDaw('ux)) o~
nu @ nu

for B = 0 => pure annihilation with a stagnation point flow

Schematic view (Wikipédia)

2 _ B2 g
1P = @ —B" Dawson function -> Daw(x) = f exp(t* — x*)dt
2
na 0

0< <1

n : resistivity, E,: reconnection rate
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Application to MHD reconnection

* PINNSs code for 2D steady-state reconnection

V-VV-(VXB)XB+VP=0 V- V=0
VX (VxB)+nV*B =0 V-B=0

-> dimensionless MHD equations

- First ever PINNs solver for dynamical MHD ? A

- 6 scalar PDEs => 6 physics-based partial loss functions Schematic view (Wikipédia)
- 5scalar variables => 5 output neurons

- Dirichlet BCs for V and B imposed at boundaries using exact solution

- Parameters used:
[.=2.10% , W= @r=1,N.=700 , N, =120 (30 per boundary)
9 hidden layers with 30 neurons/layer -> 7716 parameters <- @
Adam optimizer
Training stopped after 25 000 epochs (40 minutes on a single 8 core CPU)
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Application to MHD reconnection
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* It works with a reasonable CPU time (less than 1 h) 107
the precision: relative maximum error of order 103
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Conclusions and prospectives

* PINNs offers a complementary approach & perhaps alternative

- Drawbacks: -> possible improvements
1. Training can be long/difficult and CPU time consuming = > possible improvements
- GPU acceleration
- Adaptive variants (loss functions with adaptive sampling, optimizers, ...)
2. The precision is good/average (not enough for some applications ?) -> 2" order optim.
under development

- Advantages:

1. Easy to handle and mesh-free

2. Once trained, solutions/derivatives are instantaneously obtained

3. Can be used in different ways: promising complementary approach !

-> Finding unknown physics (sources terms for equilibria) -> inverse problems
in combination with more data

-> Solving multiple solutions (equilibrium, and for reconnection)
under development see Baty (2023) for ODE’s
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Conclusions and prospectives

* Prospectives

- Exploit reconnection solver -> reconsider other fast reconnection solutions
(see Priest & Forbes book 2000)

- Extend to three dimensional MHD equlibria and dynamics

- Extend to time-dependent dynamics (use of data from traditional solvers ?)

Thank you for your attention
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Backup slides (1)
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A constraint on zero x and y first derivative of yis added at X-point
and only 20 Dirichlet training data points are used at boundary
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Backup slides (2)

Inflow boundary
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Outflow boundary

Inflow boundary

Magnetic field lines & flow velocity - Reconnective annihilation
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Outflow boundary

Magnetic reconnection for different resistivity 7 values (10 and 103) for 5= 0.5
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