

Observation of fast-ion driven modes in JET and effect on turbulence

J. Ruiz Ruiz¹, J. Garcia², M. Barnes¹, C. Giroud³, M. Hardman⁴, J.C. Hillesheim⁵, Y. Kazakov⁶, S. Mazzi², F.I. Parra⁷, B. Patel³

1. Oxford 2. CEA 3. CCFE 4. Tokamak Energy 5. CFS 6. LPP-ERM/KMS 7. PPPL

20th European Fusion Theory Conference, Padova, Italy, October 2-5, 2023

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

$$E_f \gg T_i, T_e$$

 $n_f \ll n_i, n_e$

- Originate in plasma heating, or in fusion process: very common!!
 - → heat the plasma through collisions as they slow down

$$E_f \gg T_i, T_e$$

 $n_f \ll n_i, n_e$

- Originate in plasma heating, or in fusion process: very common!!
 - → heat the plasma through collisions as they slow down
- Fast ions (FI) can excite MHD instabilities [Rosenbluth PRL 1975].
 - can resonate with Alfvén waves as they slow down (need $v_f \gtrsim v_A$)
 - can cause high fast ion transport

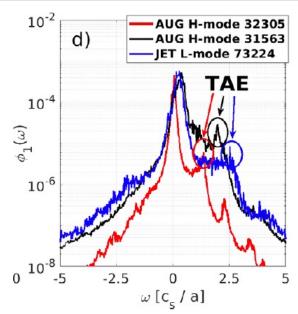
$$E_f \gg T_i, T_e$$

 $n_f \ll n_i, n_e$

- Originate in plasma heating, or in fusion process: very common!!
 - → heat the plasma through collisions as they slow down
- Fast ions (FI) can excite MHD instabilities [Rosenbluth PRL 1975].
 - can resonate with Alfvén waves as they slow down (need $v_f \gtrsim v_A$)
 - can cause high fast ion transport
- Fast ions can also have a direct effect on turbulence:
 - 1. Dilution (through quasineutraliy: $Z_i n_i + \mathbf{Z}_f \mathbf{n}_f = n_e$)
 - 2. Modification of equilibrium (β' stabilization)
 - 3. Active kinetic effect 'Linear resonance' between fast ions and ITG [Di Siena NF 2018, PoP 2019] → improved dilution model [Wilkie NF 2018]
 - these effects are small when extrapolating to a reactor

$$E_f \gg T_i, T_e$$

 $n_f \ll n_i, n_e$

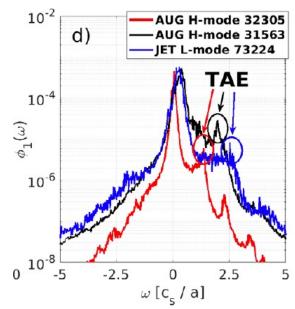

- Originate in plasma heating, or in fusion process: very common!!
 - → heat the plasma through collisions as they slow down
- Fast ions (FI) can excite MHD instabilities [Rosenbluth PRL 1975].
 - can resonate with Alfvén waves as they slow down (need $v_f \gtrsim v_A$)
 - can cause high fast ion transport
- Fast ions can also have a direct effect on turbulence:
 - 1. Dilution (through quasineutraliy: $Z_i n_i + \mathbf{Z}_f \mathbf{n}_f = n_e$)
 - 2. Modification of equilibrium (β' stabilization)
 - 3. Active kinetic effect 'Linear resonance' between fast ions and ITG [Di Siena NF 2018, PoP 2019] → improved dilution model [Wilkie NF 2018]
 - these effects are small when extrapolating to a reactor
- Recent: Fast-ion driven modes can interact with (and stabilize!) turbulence

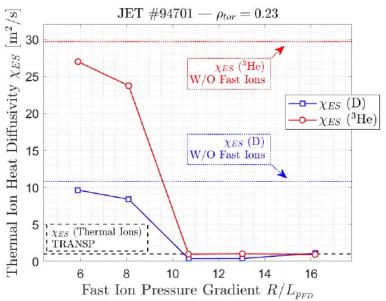
Indirect effect: Fast-ion driven Alfvén eigenmodes can nonlinearly interact with (and stabilize!) turbulence

JET, AUG-U [Di Siena NF 2019]

- High-freq. feature in the potential
 → toroidal Alfvén eigenmodes (TAEs)
- Live at low $k_y \rho_i \sim 0.1$
- TAEs drive ZF → stabilizes turbulence
- No TAEs observed in experiment

Indirect effect: Fast-ion driven Alfvén eigenmodes can nonlinearly interact with (and stabilize!) turbulence




JET, AUG-U [Di Siena NF 2019]

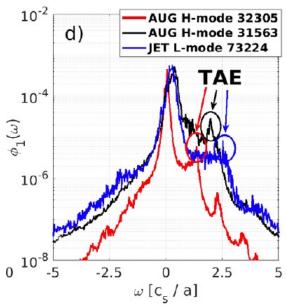
- High-freq. feature in the potential
 → toroidal Alfvén eigenmodes (TAEs)
- Live at low $k_{\nu}\rho_i{\sim}0.1$
- TAEs drive ZF → stabilizes turbulence
- No TAEs observed in experiment

JET. [Mazzi Nat. Phys 2022]:

- Unstable AEs (exp & sim).
- Increase of ZF activity with TAE drive R/L_{PFD}
- Decrease in χ_{ES}

Indirect effect: Fast-ion driven Alfvén eigenmodes can nonlinearly interact with (and stabilize!) turbulence

JET, AUG-U [Di Siena NF 2019]

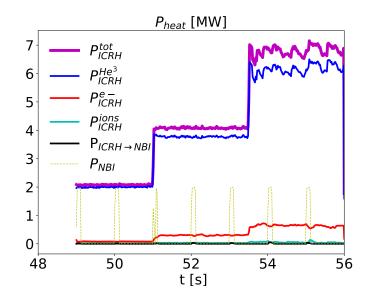

- High-freq. feature in the potential
 → toroidal Alfvén eigenmodes (TAEs)
- Live at low $k_{\nu}\rho_i{\sim}0.1$
- TAEs drive ZF → stabilizes turbulence
- No TAEs observed in experiment


JET. [Mazzi Nat. Phys 2022]:

- Unstable AEs (exp & sim).
- Increase of ZF activity with TAE drive R/L_{PFD}
- Decrease in χ_{ES}

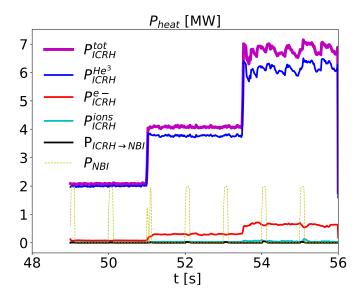
Open questions that motivate this work:

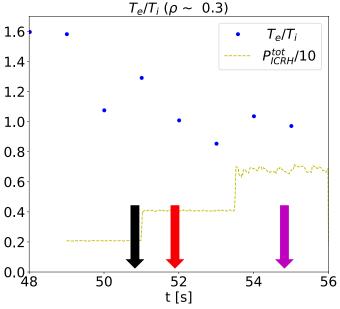
- Generation of ZFs by AEs (and zonal fields $A_{||}!$)
- **Electron transport** with ion-scale turbulence is stabilized by AEs?



'Anomalous' ion-heating generated via MeV-range ICRH fast ions in JET?'

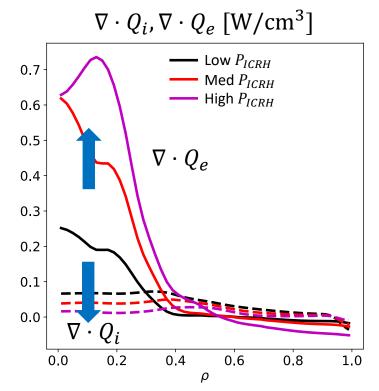
- L mode, ICRH heating (no NBI) generates MeV range
 He³ [*] → dominant e- heating!
 - H+D (background) + He³ (fast)
 - Most heating to He³ (4-5 MeV)
 - → slows down on e-

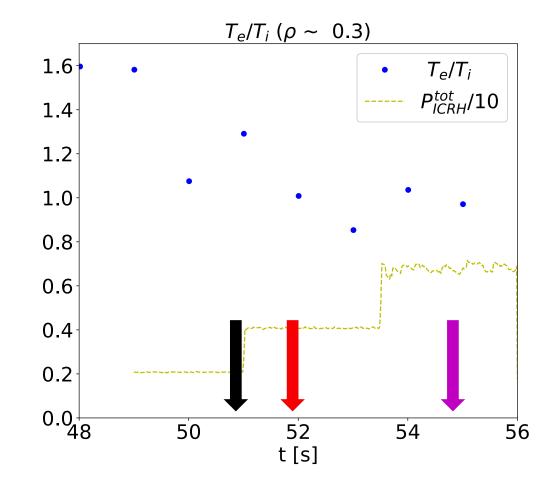



'Anomalous' ion-heating generated via MeV-range ICRH fast ions in JET?'

- L mode, ICRH heating (no NBI) generates MeV range
 He³ [*] → dominant e- heating!
 - H+D (background) + He³ (fast)
 - Most heating to He³ (4-5 MeV)
 - → slows down on e-

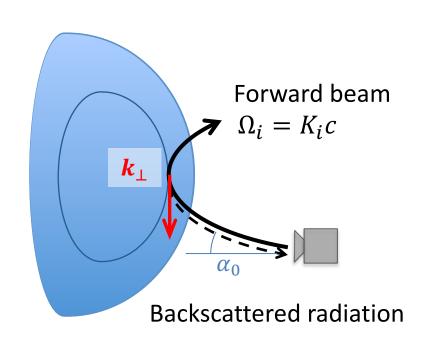
- T_e increases, but T_e/T_i decreases \rightarrow 1!
 - P_{ei}^{coll} decreases with T_e
 - Alpha channeling?
 - Turbulent energy exchange P_{ei}^{turb} ?
 - Ion turbulence is stabilized?




10

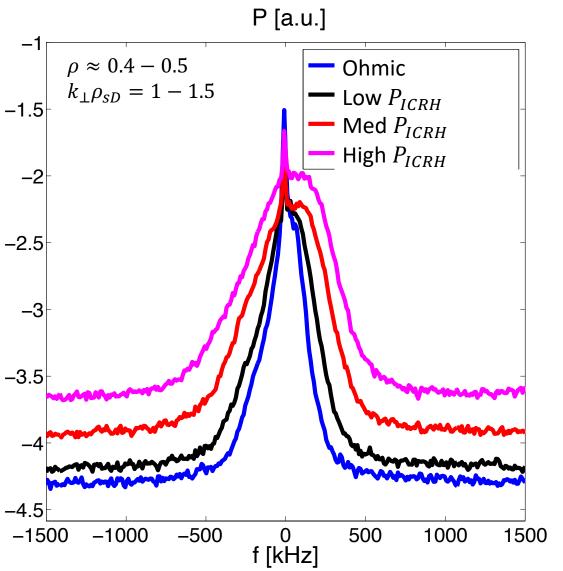
TRANSP shows that ion thermal transport approaches NC levels, dominant electron transport in deep core

- $\nabla \cdot Q_i$ dominates in outer core and Ohmic phase
- $\nabla \cdot Q_e$ dominates inside $\rho \approx 0.4$
- P_i decreases with P_{ICRH} , P_e increases
 - Suggests changes in ion turbulence
 - How is heat exhausted via e-?



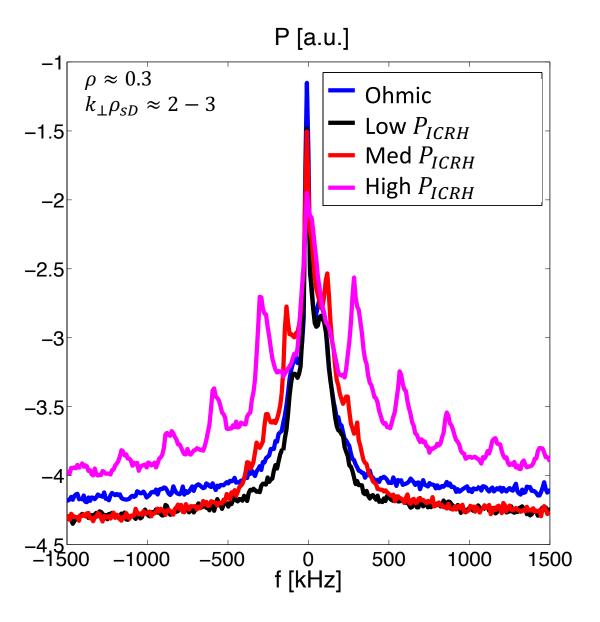
Hypothesis is that fast ions stabilize ion turbulence & drive e- turbulence

Perform turbulence measurements using Doppler Backscattering (DBS) diagnostic



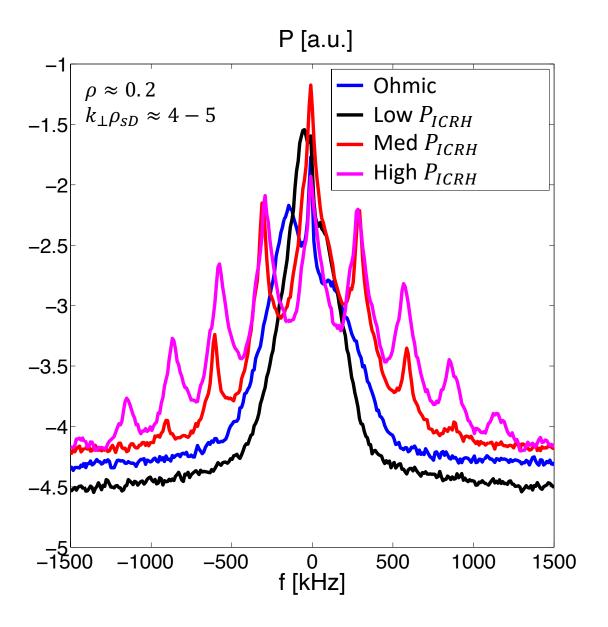
- Launch microwave beam at an angle α_0 wrt. horizontal ($\lambda_i \sim 1-3$ mm).
- Beam propagates into plasma until it encounters a cutoff.
- Forward beam deviated upwards.
- Bragg condition: Detect backscattered radiation from turbulence wavenumber $\mathbf{k}_{\perp} = -2\mathbf{K}_{i}$
- Scattered power $P_{S} \propto \left(\left| \delta n \left(\overrightarrow{k}_{\perp} \right) \right|^{2} \right)$
- DBS measures one \vec{k}_{\perp} .

Mid-core DBS measurements show low-f, broadband turbulence increases with P_{ICRH}



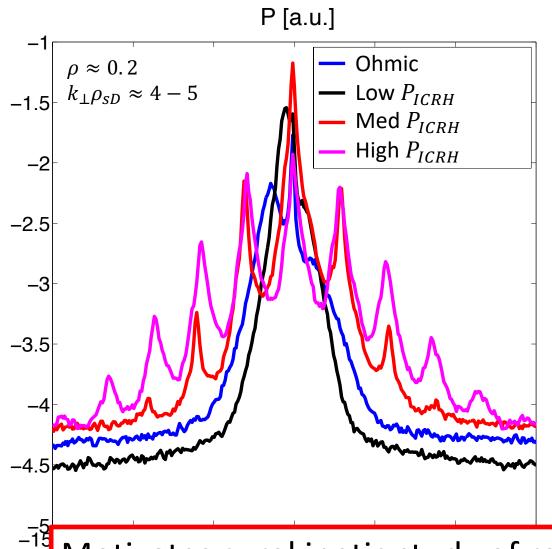
- Mid-core Radial location $\rho \approx 0.4 0.5 \ \text{typically characterized by ITG}$ turbulence in similar JET discharges
- Measured turbulence wavenumber $k_\perp \rho_{sD} = 1-1.5$ is intermediate ion-to-electron scale
- Low-f, broadband spectrum ($f \approx 100 \text{ kHz}$) increases with P_{ICRH} .
- Increase in turbulence fluctuation power is consistent with increase in Q_e.

Fast-ion driven AEs observed in the deep core by DBS as PICRH increases



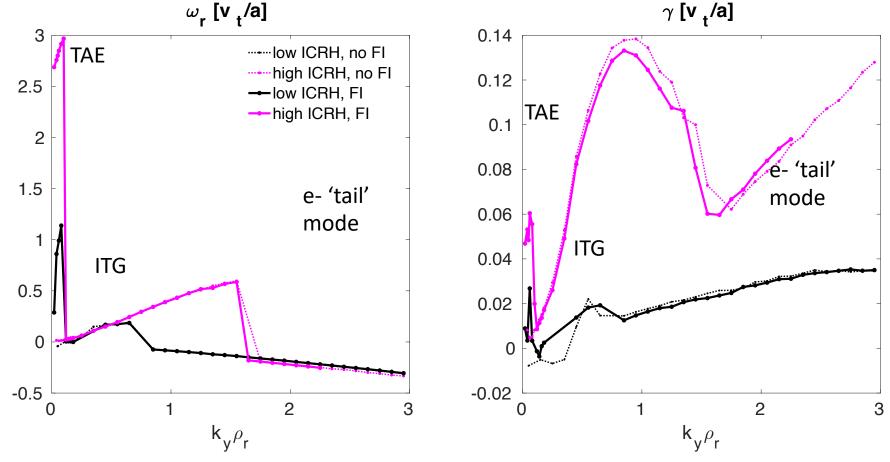
- Deep-core: low-f turbulence disappears in favor of TAEs at med+high P_{ICRH}
 - What happens to the low-f turbulence in presence of TAEs ($\Delta f \approx 260-290~\mathrm{kHz}$)? Indications it might stabilize in deepest channels
 - Why are we measuring TAEs (low $k_{y}\rho_{s}\sim0.1$) at high $k_{y}\rho_{s}$ with DBS?

Fast-ion driven AEs observed in the deep core by DBS as PICRH increases



- Deep-core: low-f turbulence disappears in favor of TAEs at med+high P_{ICRH}
 - What happens to the low-f turbulence in presence of TAEs ($\Delta f \approx 260-290 \ \mathrm{kHz}$)? Indications it might stabilize in deepest channels
 - Why are we measuring TAEs (low $k_{y}\rho_{s}\sim0.1$) at high $k_{y}\rho_{s}$ with DBS?
- Similar spectrum deeper in the core for even higher $k_{\mathcal{V}}\rho_{\mathcal{S}}$

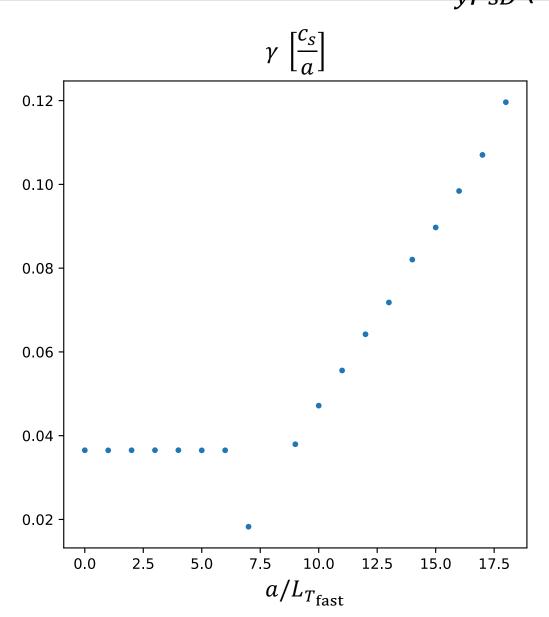
Fast-ion driven AEs observed in the deep core by DBS as PICRH increases



- Deep-core: low-f turbulence disappears in favor of TAEs at med+high P_{ICRH}
 - What happens to the low-f turbulence in presence of TAEs ($\Delta f \approx 260-290~\mathrm{kHz}$)? Indications it might stabilize in deepest channels
 - Why are we measuring TAEs (low $k_y \rho_s \sim 0.1$) at high $k_y \rho_s$ with DBS?
- Similar spectrum deeper in the core for even higher $k_{\mathcal{V}}\rho_{\mathcal{S}}$

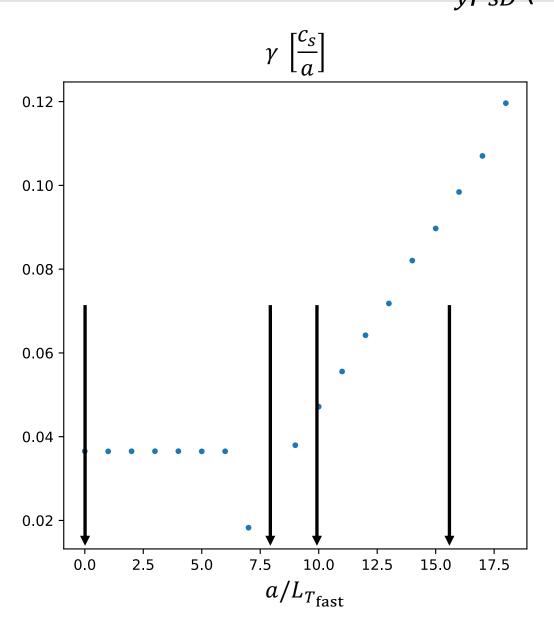
Motivates gyrokinetic study of role of TAEs in determining Q_i , Q_e

Linear GS2 shows destabilization of low k_y TAE (by fast He³), ITG and electron-driven 'long-tail' mode



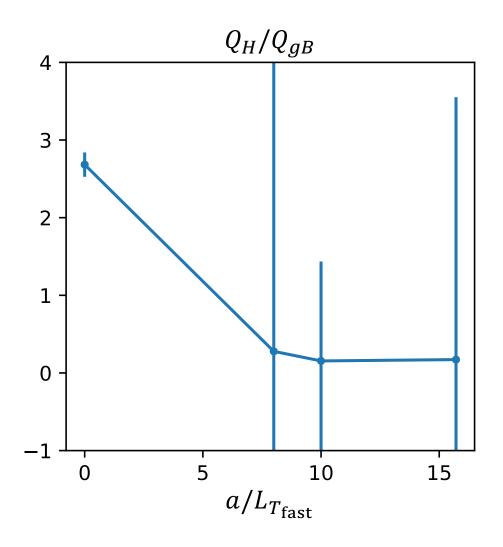
- Low ICRH: Weakly unstable TAEs, ITG & e- tail mode (~ Ohmic)
- High ICRH: Highly driven TAE, ITG and e- tail mode
 - TAE matches measured DBS freq. ($f \approx 260-290 \text{ kHz}$), $n \approx 4-6 \text{ (}k_{\nu}\rho_{sD} \approx 0.04\text{)}$
- No low- $k_{
 m v}$ TAE without FI

Linear CGYRO for high $P_{\rm ICRH}$ shows critical gradient behavior with a/L $_{\rm Tfast}$ at low $k_{\rm V} \rho_{\rm SD}$ (TAE)



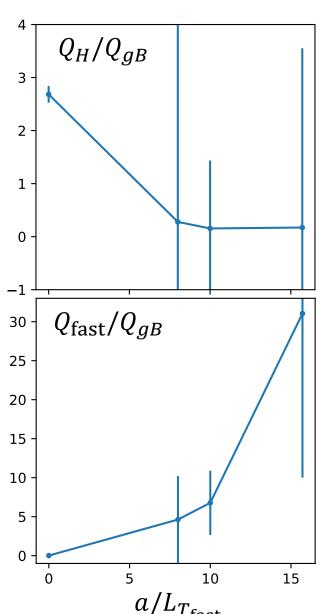
- $k_y \rho_{SD} \approx 0.04$
- $a/L_{T_{\rm fast}} < 8$: long-tail mode (~MT)
- $a/L_{T_{\mathrm{fast}}} > 8$: TAE

Linear CGYRO for high $P_{\rm ICRH}$ shows critical gradient behavior with a/L $_{\rm Tfast}$ at low $k_{ m V} ho_{\rm SD}$ (TAE)



- $k_y \rho_{SD} \approx 0.04$
- $a/L_{T_{\rm fast}} < 8$: long-tail mode (~MT)
- $a/L_{T_{\text{fast}}} > 8$: TAE
- Probe turbulence without fast particles, near marginal, and at high $a/L_{T_{\rm fast}}$ drive of TAE.

Nonlinear CGYRO for high P_{ICRH} : turbulence stabilization for a/ L_{Tfast} > linear TAE marginal stability

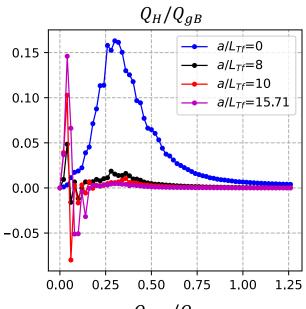

- Electromagnetic (ϕ , $A_{||}$), fast-Maxwellian He³ ($T_f \approx 168 \ T_i$)
- TAE+ITG scales:

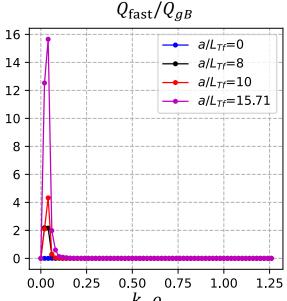
$$k_y \rho_{SD} = [0.02, 1.26], L_y = 314 \rho_{SD}$$

 $k_x \rho_{SD} = [0.015, 2.93], L_x = 410 \rho_{SD}$

- Heat flux dominated by ions for no FI, $Q/Q_{gB} \approx 3$
- Stabilization of $Q_{\text{ion/e-}}$ with $a/L_{T_{\text{fast}}} \ge \text{marginal}$

Nonlinear CGYRO for high P_{ICRH} : turbulence stabilization for a/ L_{Tfast} > linear TAE marginal stability

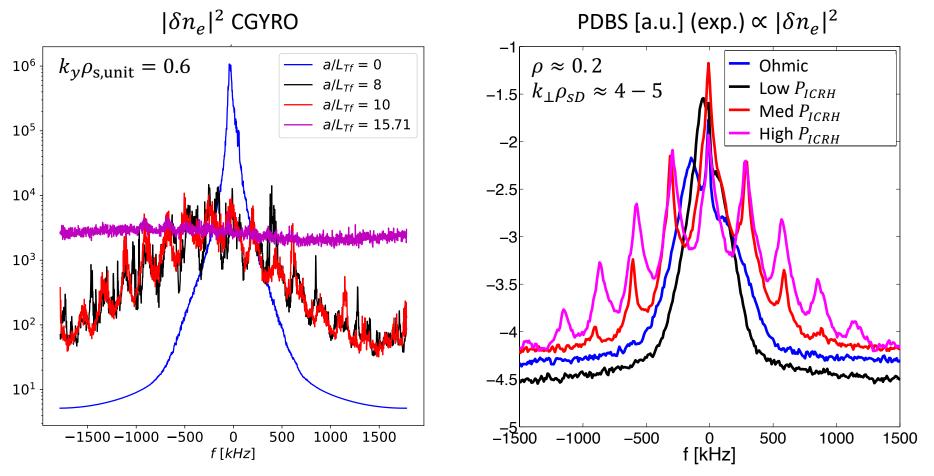

- Electromagnetic (ϕ , $A_{||}$), fast-Maxwellian He³ ($T_f \approx 168 \ T_i$)
- TAE+ITG scales:


$$k_y \rho_{SD} = [0.02, 1.26], L_y = 314 \rho_{SD}$$

 $k_x \rho_{SD} = [0.015, 2.93], L_x = 410 \rho_{SD}$

- Heat flux dominated by ions for no FI, $Q/Q_{gB} \approx 3$
- Stabilization of $Q_{\text{ion/e-}}$ with $a/L_{T_{\text{fast}}} \ge \text{marginal}$
- Fast ion fluxes dominate for $a/L_{T_{\rm fast}} \ge$ marginal \rightarrow exp. near marginal TAE stability

Turbulent wavenumber ITG spectrum is stabilized, driven at $k_y \rho_{sD} < 0.1$ in presence of fast particles



- No FI: ITG at $k_{\nu}\rho_{sD}\approx 0.3$
 - Positive AND negative fluxes!
- With FI:
 - Thermal fluxes stabilized at $k_{\nu}\rho_{sD}\approx 0.3$
 - Dominant $Q_{\rm fast}$ at $k_y \rho_{sD} < 0.1$

Comparison with DBS spectra shows qualitative agreement with turbulent $|\delta n_e|^2$ for near marginal a/L_{Tf} = 8

- CGYRO $|\delta n_e|^2(\omega)$ exhibits peaks at f_{TAE} (and harmonics) for $k_y \rho_{s,unit} = 0.6$, similar to exp.
- Peaks disappear at highest drive.
- Comparison $k_y \rho_{sD} = 4 5$ requires large comp. resources (ongoing).

Agreement improves when compared with zonal component $|\delta n_e|^2$ rather than

$k_y \rho_{s,unit} = 0.6$

- CGYRO $|\delta n_e|^2(\omega)$ exhibits peaks at f_{TAE} (and harmonics) for $k_y \rho_{\rm s,unit} = 0.6$, similar to exp.
- Peaks disappear at highest drive.
- Comparison $k_{\nu}\rho_{sD}=4-5$ requires large comp. resources (ongoing).
- DBS spectrum agrees better with **zonal** rather than $|\delta n_e|^2$ from $k_y \rho_{\mathrm SD} = 4-5$

Conclusions & next steps

Experimental evidence:

- JET discharge with dominant e- heating (via MeV range fast ions) shows T_e increases with P_{ICRH} , but T_e/T_i decreases \rightarrow 1 ('anomalous' ion heating?)
- $\nabla \cdot Q_i$ decreases with P_{ICRH} , $\nabla \cdot Q_e$ increases & becomes dominant
- Deep-core, low-f turbulence disappears in favor of higher-f TAEs

Gyrokinetic simulations:

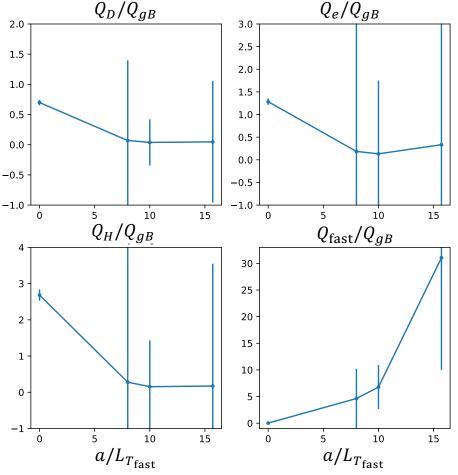
- Linear GS2/CGYRO shows destabilization of low- k_y , high-f TAE
- NL CGYRO Thermal ion/e- fluxes stabilized by increasing a/L $_{tfast}$ Fluxes dominated by Q $_{fast}$ even for marginal a/L $_{tfast}$ CGYRO $|\delta n_e|^2(\omega)$ spectrum exhibits peaks near f_{TAE} for $k_y \rho_{s,unit} = 0.6$, similar to DBS measurement, but zonal component agrees better

Next steps:

- Analyze DBS propagation + synthetic diagnostic to understand TAE measurement by DBS.
- Effect of ∇T_i on thermal/fast ion transport.
- Develop a reduced model for the TAE/ITG interaction → fundamental understanding

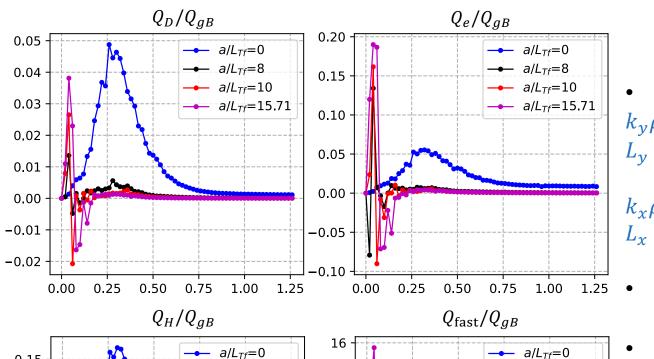
Backup slides

Details about JET 97090 and NL GK sim [*]


Ip [MA]				
B⊤ [T]	3.18			
P _{NBI} [MW]	0			etae ~ etai > 10!!
Picrh [MW]	0/2/7			For Ohmic + 2MW
fueling				
eta_{N}				
a [m]	0.93/0.94/0.95		/0.95	
rho	0.3			
ω [m/s]	14294.175/181 91.62/16931.9 9		-	$\rho_{\text{s,unit}}^* = 1/520$ $Q_{\text{gB,unit}} = 21 \frac{\text{kW}}{\text{m}^2}$
		ОН	2MW	7MW
v _A [m/s]				$1.04\ 10^7$
$\omega_A = v_A / 2q_0 R_0 \left[\frac{v_t}{a} \right]$				2.9 / 3.8 (Bunit)
v_{tref} [m/s] / c_s				$5.09\ 10^5 /\ 3.75\ 10^5$
v _f [m/s]				5.37 10 ⁶
$k_y \rho_r = 0.04$				n=5 (GS2)
$k_y \rho_{\text{s,unit}} = 0.02$				n=3 (CGYRO)

L.305	3.09 1.381	3.06
	1.381	
1 22		2.775
J. 23	0.12	0.695
L.372	1.303	1.1122
0.113	0.0667	0.244
0.039	0.043	0.0319
0.00193	0.00239	0.003795
0.00583	-0.01096	-0.0475
0.0876	0.0646	0.0325
l.1	1.155	1.457
L.337	1.315	1.2685
0.0473	0.0421	0.03764
L.57	1.84	2.65
3.1	3.29	3.58
3.18	3.19	3.17
)	110	447
)	14.8	15.7
)	0.12	0.7
	372 0.113 0.039 0.00193 0.00583 0.0876 1 337 0.0473 57	1.303 0.113 0.0667 0.039 0.0043 0.00193 0.00239 0.00583 0.01096 0.0876 0.0646 1.155 1.315 0.0473 0.0421 1.57 1.84 3.19 3.19 110 14.8

Nonlinear CGYRO for high P_{ICRH} : turbulence stabilization for a/ L_{Tfast} > linear TAE marginal stability


- Electromagnetic (ϕ , $A_{||}$), fast-Maxwellian He³ ($T_f \approx 168 T_i$)
- TAE+ITG scales:

- Heat flux Q dominated by ions for no FI, subdominant Q_e .
- Decrease in $Q_{\text{ion/e-}}$ with $a/L_{T_{\text{fast}}}$.
- Fast-ion fluxes stiff, dominate for $a/L_{T_{\rm fast}} > 8$ (TAE marginal stability).

Turbulent ITG spectrum is stabilized, driven at $k_{\nu}\rho_{sD} < 0.1$

14 ·

12

10

2 -

 \rightarrow a/L_{Tf}=8

 \rightarrow a/L_{Tf}=10

 \rightarrow a/L_{Tf}=15.71

0.15

0.10

0.05

0.00 -

-0.05

0.25

0.50 0.75

 $k_{\nu}\rho_{sD}$

Numerical resolution:

$$k_y \rho_{sD} = [0.02, 1.26],$$

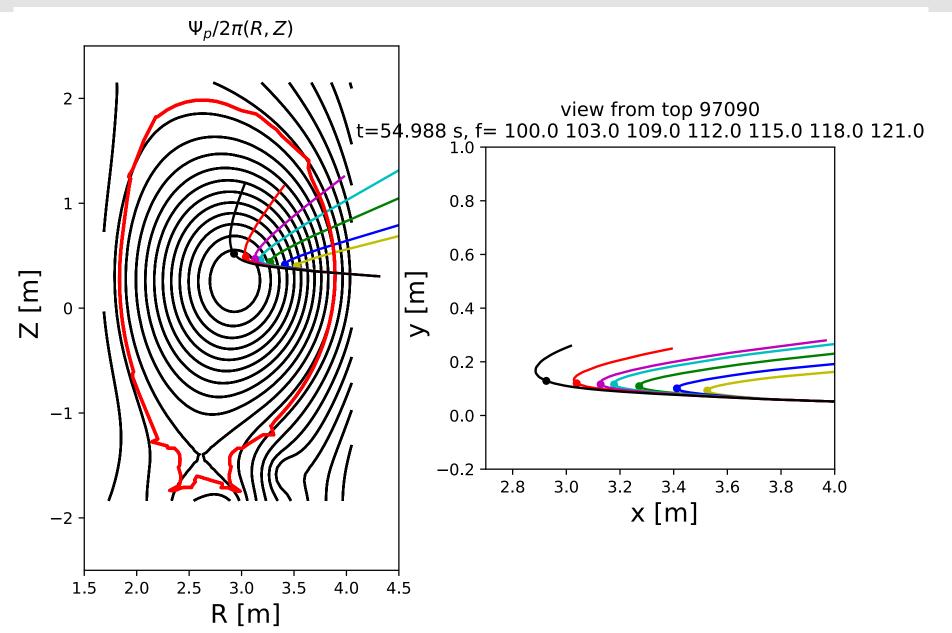
 $L_y = 314 \rho_{sD}$

$$k_x \rho_{sD} = [0.015, 2.93],$$

 $L_x = 410 \rho_{sD}$

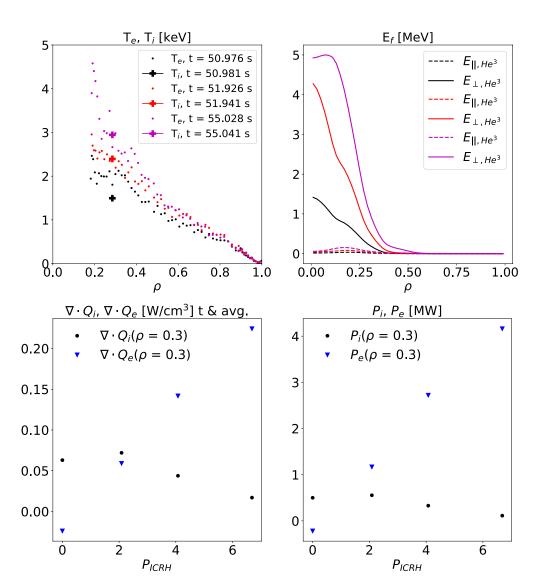
No FI: ITG at $k_{\nu}\rho_{sD}\approx 0.3$

 $a/L_{Tf}=8$

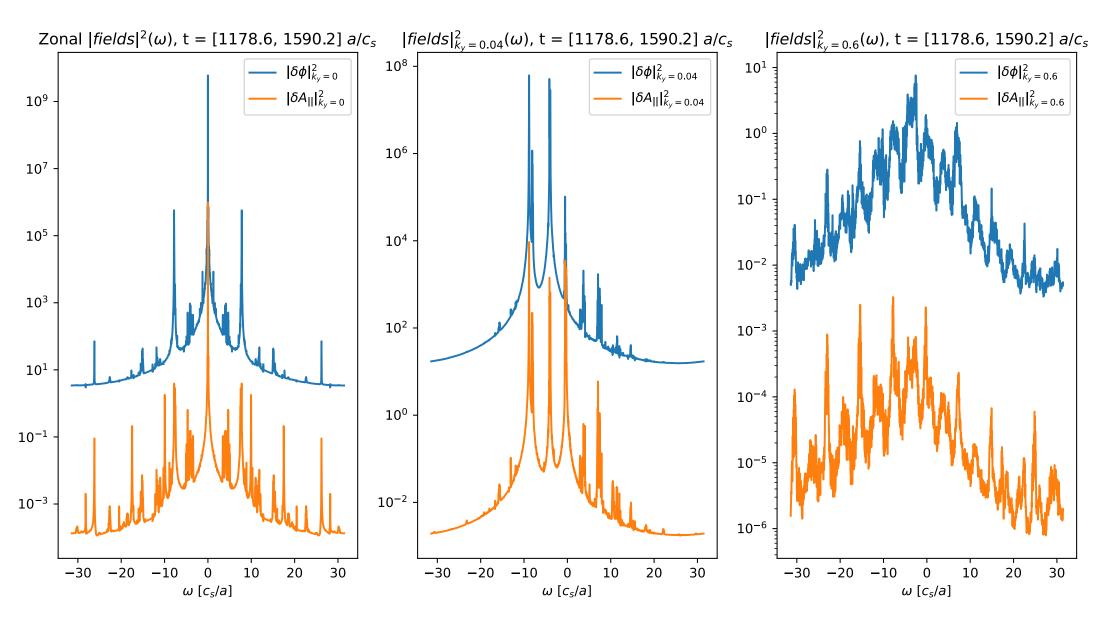

 \rightarrow a/L_{Tf}=15.71

 \leftarrow a/L_{Tf}=10

- Thermal fluxes stabilized at $k_{\nu}\rho_{sD} \approx$ 0.3
- Dominant Q_{fast} at $k_{\nu}\rho_{sD} < 0.1$


Torbeam simulations of DBS beam propagation

Experimental profiles and fluxes


- T_e increases, T_i increses more!
- E_{\perp} dominant energy into He³

- P_e(rho=0.3) increases with P_{ICRH}
- P_i(rho=0.3) decreases when TAEs unstable (med, high P_{ICRH})

Juan Ruiz Ruiz | Observation of fast-ion driven modes in JET and effect on turbulence

Frequency spectrum for different ky

Juan Ruiz Ruiz | Observation of fast-ion driven modes in JET and effect on turbulence