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Motivation
• ELM-control in large tokamaks with Resonant Magnetic Perturbation
• Prevent unacceptable heat loads on wall
• Prevent W accumulation

• Transport in pedestal with ergodized magnetic field not fully known
• Enhanced flushing out of impurities in AUG

• What modeling is needed to understand and predict this transport?
• Plasmas with applied 3D fields
• Ergodized field lines

• Time dependent particles physics
• Atomic physics, Neoclassical collisions, (plasma-wall interaction)

• From wall-to-core
• Fast enough

Sven Korving, EFTC 20232



An overview of JOREK

• Extended nonlinear-MHD code
• Typically used to study transient MHD instabilities.
• E.g. ELMs, VDE’s, CQ’s, but also RMP operation

• JOREK Particle framework

Sven Korving, EFTC 20233
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JOREK reduced MHD

Sven Korving, EFTC 20234

Induction equation: 
𝜕𝜓

𝜕𝑡
= 𝑅 𝜓, 𝑢 + 𝜂𝐽 − 𝐹

𝜕𝑢

𝜕𝜙
, 𝑢 ≡

Φ

𝐹0

Mass continuity: 
𝜕𝜌

𝜕𝑡
= −𝛻 ⋅ 𝜌 Ԧ𝑣 + 𝛻 ⋅ 𝐷𝛻𝜌 + 𝑆𝜌

Momentum 
𝜌𝜕𝑣

𝜕𝑡
= −𝜌 Ԧ𝑣 ⋅ 𝛻 Ԧ𝑣 + 𝐽x𝐵 − 𝛻𝑝 + 𝛻 ⋅ 𝜏 + Ԧ𝑆𝑣, 

with  Ԧ𝑣 = 𝑣∥ + Ԧ𝑣𝐸𝑥𝐵 + Ԧ𝑣𝑑𝑖𝑎

Energy 
𝜕𝜌𝑇

𝜕𝑡
= −𝑣 ⋅ 𝛻 𝜌𝑇 − 𝛾𝜌𝑇𝛻 ⋅ Ԧ𝑣 + 𝛻 ⋅ 𝜅𝛻𝑇 + 𝛾 − 1 𝜏: 𝛻 Ԧ𝑣 + 𝜂𝐽2 + 𝑆𝑝

Variables: 𝜓, 𝑢, 𝑗, 𝑤, 𝜌, 𝑇, 𝑣∥, optional (𝑇𝑖 , 𝑇𝑒 , 𝜌𝑛, 𝜌𝑧)

𝜓, 𝑗 BC’s given by STARWALL
Dirichlet BC: 𝑢,𝑤, Natural BC: 𝜌
Magnetized Bohm sheath BC: 𝑣∥, 𝑇

𝜓

𝑗

𝑢,𝑤

𝑣∥

𝑇

𝜌



JOREK +STARWALL

V. Mitterauer I.11 (previous talk)

Sven Korving, EFTC 20235
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The particle extension
• Guiding Center, Full Orbit, Gyro-Kinetic
• Pushers: RK4, Boris, Qin

• (Two-way) coupled to JOREK MHD fields
• Different coupling schemes

• Applications
• Impurities (sputtering/transport/SPI)
• Neutrals (recycling/puffing/MGI)
• Runaway electrons
• ITG turbulence
• Fast ions

Sven Korving, 16/09/20226
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Kinetic Particle loop

• Different groups can have different properties
• Coupled, trace
• Neutrals, impurities

• Particle physics
• Plasma-wall: effective coefficient from SDTrim

• Based on time integrated values
• Atomic: Effective rate coefficients from OpenADAS

• Events : puffing, LBO, SPI, diagnostics,etc.. 

Sven Korving, EFTC 20237

Jorek MHD timestep

Atomic physics,
collisions

Sum feedback from each particle

Project feedback to FE

Do j=1, n_particles

Do k=1, n_kinetic_steps

Event

Time-integrated particle physics

Push particle to new 𝒙

Do i=1, n_groups



Kinetic Particle loop

• Projecting arbitrary moments of 
particle distribution

• Diagnostic and/or coupling

• Conservation of coupled variables
• E.g. Mass, Momentum, Energy

• Particles stay alive between timesteps!

Sven Korving, EFTC 20238

Jorek MHD timestep

Atomic physics,
collisions

Sum feedback from each particle

Project feedback to FE

Do j=1, n_particles

Do k=1, n_kinetic_steps

Event

Time-integrated particle physics

Push particle to new 𝒙

Do i=1, n_groups



Collisional Neoclassical transport (1)

𝚪𝛼 ⋅ ∇𝜓 = 𝑅𝐹𝛼⊥ ∕ 𝑒𝛼 + 𝑛𝛼
𝐸×𝐵

𝐵2
⋅ ∇𝜓 + 𝑅0𝐵0

𝐹𝛼∥+𝑛𝛼𝑒𝛼𝐸∥

𝑒𝑎𝐵

𝒗𝑧 ⋅ ∇𝑟
𝑁𝐶 ≈ 2𝑞𝑠𝑎𝑓𝑒

2 𝐷𝑖
𝐶𝐿𝑍 𝐾

1

𝑛𝑖

𝜕𝑛𝑖

𝜕𝑟
+ 𝐻

1

𝑇𝑖

𝜕𝑇𝑖

𝜕𝑟
, PS-model→ 𝐻 = −

1

2
, 𝐾 = 1

Sven Korving, EFTC 20239

CL NCExB

𝒗𝑖,𝑑𝑖𝑎 =
𝐵 × ∇𝑝𝑖
𝑛𝑖𝑒𝑖𝐵

2

∇ ⋅ 𝑛𝑖𝒗𝑖,∥
𝑃𝑆 = −∇ ⋅ 𝑛𝑖𝒗𝑖,𝑑𝑖𝑎

NC Inward Pinch

𝒒𝑖,𝑑𝑖𝑎
ℎ𝑒𝑎𝑡 =

5𝑝𝑖
2𝑒𝑖𝐵

2
𝐵 × ∇⊥𝑇

∇ ⋅ 𝒒𝑖,∥
𝑃𝑆 = −∇ ⋅ 𝒒𝑖,𝑑𝑖𝑎

ℎ𝑒𝑎𝑡

NC Temperature Screening Effect

Enhanced diffusion: 𝐷 ≈ 𝐷𝐶𝐿 + 𝐷𝑃𝑆 = 1 + 2𝑞𝑠𝑎𝑓𝑒
2 𝐷𝐶𝐿

Cross-field transport:



Collisional Neoclassical transport (2)

• Tungsten is typically in the PS-regime, 𝜈∗𝜖3/2 > 1

• 𝜈𝑖
∗𝜖3/2 =

𝑞𝑅

𝜈𝑖𝑖𝜏𝑖𝑖
∝ 𝑞𝑅

𝑛𝑒

𝑇𝑖
2 ,           𝜈𝑧

∗𝜖3/2 ≈ 2𝜈𝑖
∗𝜖3/2

𝑍𝑧
2

𝐴𝑧

• Example: 𝑍𝑊 = 10, 20 →
𝜈𝑧
∗

𝜈𝑖
∗ ≈ (15, 60)

• Extended heat flux model for sampling from shifted-distorted-Maxwellian [Y.Homma 2013 JCP,2016 NF]

• 𝑓𝑏 𝑣𝑏 = 𝑛𝑏
𝑚𝑏

2𝜋𝑘𝑇𝑏

3/2
𝑒
−
𝑚𝑏𝑤

2

2𝑘𝑇𝑏 1 −
𝑚𝑏

𝑛𝑏

1

𝑘𝑇𝑏
2 1 −

𝑤2

5𝑣𝑡ℎ,𝑏
2 𝒒 ⋅ 𝒘 + ഥ𝒗𝑏 , 𝒘 = 𝒗𝑏 − ഥ𝒗𝑏

• 𝒒 = −𝜅∥∇∥𝑘𝑇𝑏 + 𝜅∧ Ԧ𝑒∥ × ∇⊥𝑘𝑇𝑏 − 𝜅⊥∇⊥𝑘𝑇𝑏

• Binary Collision model for coulomb collisions [Takizuka and Abe 1977 JCP]

•
𝜕𝑓𝛼

𝜕𝑡 𝑐𝑜𝑙𝑙
= −σ𝑏

𝜕

𝜕𝑣𝑗

𝑒𝛼
2𝑒𝑏

2

8𝜋𝜖0
2𝑚𝛼

∫ 𝑑𝒗′
𝛿𝑗𝑘

𝑢
−

𝑢𝑗𝑢𝑘

𝑢3
𝑓𝛼

𝑚𝑏

𝜕𝑓𝑏(𝒗′)

𝜕𝑣𝑘′
−

𝑓𝑏(𝒗′)

𝑚𝛼

𝜕𝑓𝛼

𝜕𝑣𝑘

• Results in frictional + thermal force: 𝐹 = 𝐹0 + 𝐹∇𝑇

Sven Korving, EFTC 202310



Benchmark: NC IWP, NC TSE, Flow cancellation
𝑅𝑚𝑎𝑗𝑜𝑟 = 3m,𝐵 = 9T, 𝑟 = 1m, 𝑛 = 1020m−3, 𝑇 = 250eV, 𝑡𝑠𝑖𝑚 = 70ms

Sven Korving, EFTC 202311

𝐻 = −
1

2

𝐾 = 1

𝐻 > −
1

2

𝐻 ≈ −
1

2

Although, plasma is axisymmetric, particle transport is always in 3D
Similar to [Homma et al 2016 NF], Transport corresponds with the lower 𝑞𝑠𝑎𝑓𝑒 in the distribution

NC IWP 
1

𝑛

𝜕𝑛

𝜕𝜓𝑁
= −5 NC TSE  

1

𝑇

𝜕𝑇

𝜕𝜓𝑁
= −7.5Flow cancellation 

1

𝑛

𝜕𝑛

𝜕𝜓𝑁
= −5,

1

𝑇

𝜕𝑇

𝜕𝜓𝑁
= −10



Simulating W in AUG with RMPs

Sven Korving, EFTC 202312



Particle model and physics included in this work

• Included physics:
• Fully kinetic
• Time-dependent
• Test particle (no radiation feedback)
• Atomic physics (ion/rec/rad)

• Parallel friction (collisions with 𝐻 ≈ −
1

2
)

• 𝐸∥ and 𝐸 × 𝐵 transport
• In 3D, stochastic fields.

• Not used for this case:
• Coupled particles, plasma-wall interaction

Sven Korving, EFTC 202313

Computational cost:
Wall time:           29 hours 
Simulated time: 72 ms
N particles:  106

N cpus: 9x36 = 324
CPU time ~104 cpuh



Setup AUG simulation with RMPs

𝐵0 = −1.83T, 
𝐼𝑝 = 0.9MA, 

𝑞95 = 3.6,
𝐼𝑟𝑚𝑝 = 0.9~1.22kA,

𝑛𝑟𝑚𝑝 = 2

Sven Korving, EFTC 202314

[V Mitterauer et al 2022 J. Phys.: Conf. Ser. 2397 012008]

• What is the effect of the 3D’ness on radial transport?
• In 3D, with RMPs
• In 2D, without RMPs
(Ad hoc transport coefficient to force identical pedestal profile)

• Testing 2 effects:
• Enhanced out flushing
• Screening

• Qualitive behavior of W transport

Initially with parallel friction only



Radial profiles
• Pedestal lowered due to RMPs
• Low density pedestal due to pump-out

• OMP profiles of background plasma

• Initial W distribution
• Axisymmetric, gaussian around a 𝜓𝑁

• Coronal equilibrium, 𝑇 = 𝑇𝑏

𝒗𝑧 ⋅ ∇𝑟
𝑁𝐶 ∝ 𝐾

1

𝑛𝑖

𝜕𝑛𝑖

𝜕𝑟
− 𝐻

1

𝑇𝑖

𝜕𝑇𝑖

𝜕𝑟

Sven Korving, EFTC 202315
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Turbulent transport
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Pedestal and edge results

Parallel smoothed W projection for flux surface average transport
Pedestal at OMP for indication

• After 10 ms
• RMP results in

• Enhanced diffusion
• Enhanced convection (outflushing)

Sven Korving, EFTC 202316

𝜓𝑁 = 1

R

Initial

Axi W_dens

RMP W_dens
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𝜓𝑁 = 1

R

Initial

Axi W_dens

RMP W_dens

Pedestal and edge results

Parallel smoothed W projection for flux surface average transport
Pedestal at OMP for indication

• After 10 ms
• RMP results in

• Enhanced diffusion
• Enhanced convection (inwards)

• Axisymmetric case, W quickly decays in SOL
• SOL is in convection-dominated regime

low ∇∥𝑇

• W remains in the pedestal region
and slowly diffuses

• However, transport and profiles are not 
axisymmetric

This is not the full picture!



Possibility of W trapping in potential wells

Contour: medium W density
Contour: high W density

• W density and transport strongest 
at HFS and Top,

• Localized trapping at the bottom of 
the pedestal and SOL due to electric 
potential wells.

Sven Korving, EFTC 202318



W-LBO in AUG
𝑡 − 𝑡0 = 0.05 ms 0.24 ms 1.5 ms 7 ms

Sven Korving, EFTC 202319

Trapped 
W

N=0 component of the projected W density



Summary & Outlook
• JOREK + particles capabilities

• Free-boundary visco-resistive-MHD with grid up to first wall
• (trace and coupled) Kinetic particles with effects from:

• E&M fields, stochastic field lines, ionization/recombination/radiation,
NC collisions, sputtering

• JOREK particles reproduces neoclassical transport

• NC Diffusion, NC Inward Pinch, NC Temperature screening, flow cancellation with 𝐻 ≈ −
1

2

• First demonstration of time dependent W transport in AUG RMP 
• With Neoclassical collisions, E-field and stochastic field lines

• RMP enables more transport through the pedestal in both directions

Outlook:
• More realistic scenario to replicate experiment

• Fine-tuning physics models

• Neutral+impurities+sputtering+coupling
• Improved collision operator
• Synthetic spectrometer diagnostic

Sven Korving, EFTC 202320



Backup slides

Sven Korving, EFTC 202321



Kinetic Particle loop

Sven Korving, EFTC 202322

Jorek MHD timestep

Atomic physics,
collisions

Sum feedback from each particle

Project feedback to FE

Do j=1, n_particles

Do k=1, n_kinetic_steps

Event

Time-integrated particle physics

Push particle to new 𝒙

Do i=1, n_groups
• Particle physics
• Atomic: Effective rate coefficients from OpenADAS
• Plasma-wall: effective coefficient from SDTrim

• Based on time integrated values

• Events : puffing, LBO, SPI, diagnostics,etc.. 
• Conservation of coupled variables
• E.g. Mass, Momentum, Energy

Kinetic step

Fluid step

Explicit time steps

Implicit time steps



Sven Korving, EFTC 202323

Coupling and Projection to Finite Elements

Express source in JOREK FE representation to obtain a 
continuous function from a list of discrete particles

Projection using weak form:

Smoothing:

Coupling in the JOREK form of the equations

With :

D.C. van Vugt, PhD thesis



JOREK Parallelization

• MPI + openMP
• Main parts
• Matrix construction, Preconditioner factorization, GMRES solve step

Sven 
Korvi
ng, 
FPE 
meeti
ng, 

24

Scales very well
Scaling problematic

Fluid part Kinetic particle part

G.T.A. Huijsmans, IRFM 2021



Collisions benchmarks

Sven Korving, EFTC 202325



Homma tests (1)

Sven Korving, EFTC 202326



Homma tests(2)

Sven Korving, EFTC 202327



Convergence of gyro and Collision time steps

Sven Korving, EFTC 202328



Diffusions as function of safety factor

Sven Korving, EFTC 202329



Sven Korving, EFTC 202330

IWP TSE



Benchmark: NC IWP, NC TSE, Flow cancellation
𝑅𝑚𝑎𝑗𝑜𝑟 = 3m,𝐵 = 9T, 𝑟 = 1m, 𝑛 = 1020m−3, 𝑇 = 250eV, 𝑡𝑠𝑖𝑚 = 70ms

Sven Korving, EFTC 202331

𝐻 = −
1

2

𝐾 = 1

𝐻 > −
1

2

𝐻 ≈ −
1

2

Although, plasma is axisymmetric, particle transport is always in 3D
Similar to [Homma et al 2016 NF], Transport corresponds with the lower 𝑞𝑠𝑎𝑓𝑒 in the distribution

NC IWP 
1

𝑛

𝜕𝑛

𝜕𝜓𝑁
= −5 NC TSE  

1

𝑇

𝜕𝑇

𝜕𝜓𝑁
= −7.5Flow cancellation 

1

𝑛

𝜕𝑛

𝜕𝜓𝑁
= −5,

1

𝑇

𝜕𝑇

𝜕𝜓𝑁
= −10



W-LBO in AUG

Sven Korving, EFTC 202332

W core relaxation 100~200 ms

𝑊46+
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