Full flux surface (FFS) δf -gyrokinetic code: stella

G. O. Acton^{1,2}, M. Barnes¹, S. Newton², H. Thienpondt⁵, F. Parra³, W. Dorland⁴

¹Rudolf Peierls Centre For Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK

²Culham Centre for Fusion Energy, United Kingdom Atomic Energy Authority, Abingdon, OX14 3EB, UK

 3 Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

⁴Department of Physics, University of Maryland, College Park, MD 20742, United States of America

 $^5{\rm Laboratorio}$ Nacional de Fusion, CIEMAT, 28040 Madrid, Spain

EFTC 2023 Padova

Table of Contents
1. Motivation
2. Real Space Formalism

3. Flux Tube Formalism

4. Flux Annulus Formalism

5. Code

6. Results

Table of Contents

1. Motivation

2. Real Space Formalism

3. Flux Tube Formalism

4. Flux Annulus Formalism

5. Code

6. Results

▶ Stellarators can be neoclasically optimised

- ► Stellarators are neoclassically optimised
- ▶ Demand omnigeneity
- Require time-averaged radial magnetic drifts away from flux surface to vanish for all particles
- ▶ Particle orbits and neoclassical transport are the same in quasisymmetric devices as in truly axisymmetric ones
- ▶ "Unwrap" stellarator with certain transformation and magnetic field looks the same to particles

- Stellarators are neoclassically optimised
- Demand omnigeneity
- Require time-averaged radial magnetic drifts away from flux surface to vanish for all particles
- ▶ Particle orbits and neoclassical transport are the same in quasisymmetric devices as in truly axisymmetric ones

- ► Stellarators are neoclassically optimised
- ightharpoonup Hence, turbulent transport dominates \rightarrow model using δf -gyrokinetics

- ▶ Stellarators are neoclassically optimised
- \blacktriangleright Hence, turbulent transport dominates \rightarrow model using $\delta f\text{-gyrokinetics}$
- Axisymmetry means all field lines are equivalent

- ► Stellarators are neoclassically optimised
- \blacktriangleright Hence, turbulent transport dominates \rightarrow model using δf -gyrokinetics
- Axisymmetry means all field lines are equivalent
- Stellarator magnetic geometry varies with field line. Single field line is not sufficient!

- ► Stellarators are neoclassically optimised
- ▶ Hence, turbulent transport dominates \rightarrow model using δf -gyrokinetics
- ► Axisymmetry means all field lines are equivalent
- Stellarator magnetic geometry varies with field line. Single field line is not sufficient!
- ▶ Modes on different field lines interact \rightarrow complicates algorithms due to α -inhomogeneity

- ► Stellarators are neoclassically optimised
- ▶ Hence, turbulent transport dominates \rightarrow model using δf -gyrokinetics
- Axisymmetry means all field lines are equivalent
- Stellarator magnetic geometry varies with field line. Single field line is not sufficient!
- ▶ Modes on different field lines interact \rightarrow complicates algorithms due to α -inhomogeneity
- ▶ 3 main approaches to model turbulence:
 - real space
 - ▶ flux tube
 - full flux annulus

Table of Contents

1. Motivation

2. Real Space Formalism

3. Flux Tube Formalism

4. Flux Annulus Formalism

5. Code

6. Results

Real space 3D formalism

 \blacktriangleright Full device simulation in real space

Real space 3D formalism

- ▶ Full device simulation in real space
- ▶ Initialise at t = 0 across whole device and evolve globally according to GK equation
- ▶ Use finite difference schemes to take derivatives
- ▶ Impose periodicity in ζ

Real space 3D formalism: toroidal boundary conditions

- ▶ Want domain to be 2π -periodic in ζ
- ▶ Field lines on a non-rational surface will not close on each other
- ▶ Need to interpolate field lines back onto ones which lie on our α -grid

 \blacktriangleright Capable of modelling full device - good for benchmarking codes

- ▶ Capable of modelling full device good for benchmarking codes
- ► Can be very computationally expensive
 - ▶ Need high resolution to capture gyro-orbit effects
 - ► Can take months on multiple CPU cores

- ▶ Capable of modelling full device good for benchmarking codes
- ► Can be very computationally expensive
 - ▶ Need high resolution to capture gyro-orbit effects
 - Can take months on multiple CPU cores
- ▶ Loose spectral accuracy in derivatives

- ► Capable of modelling full device good for benchmarking codes
- ► Can be very computationally expensive
 - ▶ Need high resolution to capture gyro-orbit effects
 - Can take months on multiple CPU cores
- ▶ Loose spectral accuracy in derivatives
- Radial boundary conditions are difficult to choose

Table of Contents

- 1. Motivation
- 2. Real Space Formalism
- 3. Flux Tube Formalism
- 4. Flux Annulus Formalism
- 5. Code
- 6. Results

 \blacktriangleright Simulation coordinates: $(x,y,z) \to (\psi,\alpha,\zeta)$

- Image: SCD CCP-Plasma
- \blacktriangleright Simulation coordinates: $(x,y,z) \to (\psi,\alpha,\zeta)$
- \blacktriangleright Initialise some δf and ϕ at t=0 on simulation domain

Image: SCD CCP-Plasma

- ▶ Simulation coordinates: $(x, y, z) \rightarrow (\psi, \alpha, \zeta)$
- \blacktriangleright Initialise some δf and ϕ at t=0 on simulation domain
- ► Evolve gyrokinetic equation pseudo-spectrally

- Image: SCD CCP-Plasma
- ▶ Simulation coordinates: $(x, y, z) \rightarrow (\psi, \alpha, \zeta)$
- ▶ Initialise some δf and ϕ at t = 0 on simulation domain
- ► Evolve gyrokinetic equation pseudo-spectrally
 - ▶ Decay in v_{\parallel} ; $g(t, \boldsymbol{x}, v_{\parallel} \to \pm \infty, \mu) \to 0$
 - ▶ Turbulence is taken as periodic in perpendicular directions, $k_x, k_y \gg 1/L$
 - \triangleright Use twist-and-shift boundary conditions in z to capture extended modes

Image: Nicolas Christen, Bistable turbulent transport in fusion plasmas with rotational shear (2021)

Image: Nicolas Christen, Bistable turbulent transport in fusion plasmas with rotational shear (2021)

▶ If $\hat{s} \propto \mathrm{d}q/\mathrm{d}\psi \neq 0$ then domain gets sheared as it travels around device

Image: Nicolas Christen, Bistable turbulent transport in fusion plasmas with rotational shear (2021)

- ▶ If $\hat{s} \propto \mathrm{d}q/\mathrm{d}\psi \neq 0$ then domain gets sheared as it travels around device
- ▶ Eddies get sheared
- ▶ Pushed to higher perpendicular wavenumbers

Image: Nicolas Christen, Bistable turbulent transport in fusion plasmas with rotational shear (2021)

▶ Use "twist-and-shift" boundary conditions to map sheared domain back onto original one

Image: Nicolas Christen, Bistable turbulent transport in fusion plasmas with rotational shear (2021)

- ▶ Use "twist-and-shift" boundary conditions to map sheared domain back onto original one
- "Twist-and-shift" is the Fourier equivalent of the real-space boundary condition *

Image: Nicolas Christen, Bistable turbulent transport in fusion plasmas with rotational shear (2021)

- Use "twist-and-shift" boundary conditions to map sheared domain back onto original one
- "Twist-and-shift" is the Fourier equivalent of the real-space boundary condition *
- ▶ Enforce periodicity after one geometric turn:

$$\hat{A}_{k}(z) = \hat{A}_{k'}(z + 2p\pi)$$
 (phase factor) (1)

Image: Nicolas Christen, Bistable turbulent transport in fusion plasmas with rotational shear (2021)

▶ Flux-tube simulations are sufficient for tokamaks because we can stitch our flux tubes together

Image: J.Candy, Waltz, GYRO simulation of DIII-D

▶ Flux-tube simulations are sufficient for tokamaks because we can stitch our flux tubes together

Image: J.Candy, Waltz, GYRO simulation of DIII-D

 Very fast codes which yield quick results - can perform many simulations in quick succession

Image: J.Candy, Waltz, GYRO simulation of DIII-D

- Very fast codes which yield quick results can perform many simulations in quick succession
- ▶ Easy to interpret normal modes are well defined in this system

Image: J.Candy, Waltz, GYRO simulation of DIII-D

- Very fast codes which yield quick results can perform many simulations in quick succession
- ▶ Easy to interpret normal modes are well defined in this system
- ▶ Retains spectral accuracy in spacial derivatives

Image: J.Candy, Waltz, GYRO simulation of DIII-D

- Very fast codes which yield quick results can perform many simulations in quick succession
- ▶ Easy to interpret normal modes are well defined in this system
- ▶ Retains spectral accuracy in spacial derivatives
- ▶ Does not capture global effects like coupling between different field lines

Table of Contents

1. Motivation

2. Real Space Formalism

3. Flux Tube Formalism

4. Flux Annulus Formalism

5. Code

6. Results

Flux annulus formalism: motivation

- ▶ Stellarator geometry varies with field line
- ▶ Method of stitching together flux tubes no longer holds

Image: UMD stellarator group

▶ Domain is now 2π in ζ , not 2π in θ

 \blacktriangleright Evolve pseudo-spectrally to retain spectral accuracy in derivatives

- ▶ Evolve pseudo-spectrally to retain spectral accuracy in derivatives
- ightharpoonup Simulate N_y field lines, which cover different geometry and are now coupled together

- Evolve pseudo-spectrally to retain spectral accuracy in derivatives
- \blacktriangleright Simulate N_y field lines, which cover different geometry and are now coupled together
- ▶ Want to match every incoming field line to its connecting field line apply twist-and-shift to entire poloidal domain

- Evolve pseudo-spectrally to retain spectral accuracy in derivatives
- ightharpoonup Simulate N_y field lines, which cover different geometry and are now coupled together
- ▶ Want to match every incoming field line to its connecting field line apply twist-and-shift to entire poloidal domain
- ρ_* now becomes an important physical parameter in simulations \rightarrow determines Δk_y

- ▶ Geometry is no longer trivial
- ▶ But how does geometry enter our code?

- ▶ Geometry is no longer trivial
- ▶ But how does geometry enter our code?

$$\frac{\partial g}{\partial t} = (\text{geometric factors}) \cdot (\nabla g + \nabla \langle \phi \rangle_{\mathbf{R}})$$
 (2)

- Geometry is no longer trivial
- ▶ But how does geometry enter our code?

$$\frac{\partial g}{\partial t} = \underbrace{\left(\underline{\text{geometric factors}} \right) \cdot \left(\nabla g + \nabla \underbrace{\langle \phi \rangle_{R}}_{J_{0,k} \hat{\phi}_{k}} \right)}_{(2)}$$

- ▶ Bessel functions $J_0(a_k)$ with $a_k = \frac{k_{\perp} v_{\perp}}{\Omega_s}$
- \triangleright Geometric factors are α -dependent

- ▶ Geometry is no longer trivial
- ▶ But how does geometry enter our code?

$$\frac{\partial g}{\partial t} = \underbrace{\text{(geometric factors)}}_{\text{e.g }\hat{b} \cdot \nabla z} \cdot (\nabla g + \nabla \underbrace{\langle \phi \rangle_{\mathbf{R}}}_{J_{0,\mathbf{k}}\hat{\phi}_{\mathbf{k}}}) \tag{2}$$

- ▶ Bessel functions $J_0(a_k)$ with $a_k = \frac{k_{\perp}v_{\perp}}{\Omega_s} \leftarrow k_{\perp}$ and B in argument
- ightharpoonup Geometric factors are α -dependent
- ▶ Gyro-averaging introduces coupling between different k_y -modes → no longer a local operation

- Geometry is no longer trivial
- ▶ But how does geometry enter our code?

$$\frac{\partial g}{\partial t} = \underbrace{\text{(geometric factors)}}_{\text{e.g.} \hat{b} \cdot \nabla z} \cdot (\nabla g + \nabla \underbrace{\langle \phi \rangle_{\mathbf{R}}}_{J_{0,\mathbf{k}} \hat{\sigma}_{\mathbf{k}}})$$
(2)

- ▶ Bessel functions $J_0(a_k)$ with $a_k = \frac{k_{\perp}v_{\perp}}{\Omega_s} \leftarrow k_{\perp}$ and B in argument
- ightharpoonup Geometric factors are α -dependent
- ▶ Gyro-averaging introduces coupling between different k_y -modes → no longer a local operation

- Geometry is no longer trivial
- ▶ But how does geometry enter our code?

$$\frac{\partial g}{\partial t} = \underbrace{\left(\underbrace{\text{geometric factors}}_{\text{e.g } \hat{\mathbf{b}} \cdot \nabla z} \cdot (\nabla g + \nabla \underbrace{\langle \phi \rangle_R}_{J_{0,k} \hat{\phi}_k}) \right)}_{\text{e.g } \hat{\mathbf{b}} \cdot \nabla z}$$
(2)

- ▶ Bessel functions $J_0(a_k)$ with $a_k = \frac{k_{\perp} v_{\perp}}{\Omega_s}$
- \triangleright Geometric factors are α -dependent
- ▶ Gyro-averaging introduces coupling between different k_y -modes → no longer a local operation
- \triangleright α -inhomogeneity leads to convolutions

Table of Contents

- 1. Motivation
- 2. Real Space Formalism
- 3. Flux Tube Formalism
- 4. Flux Annulus Formalism
- 5. Code
- 6. Results

Algorithm

▶ Use operator splitting to solve normalised GK equation:

Algorithm

▶ Use operator splitting to solve normalised GK equation:

$$\frac{\partial g_{\nu}}{\partial t} + \underbrace{\mathcal{S}_{\nu}[g_{\nu}, \varphi_{\nu}]}_{\text{streaming}} + \underbrace{\mathcal{M}_{\nu}[g_{\nu}]}_{\text{mirror}} + \underbrace{\mathcal{D}_{\nu}[g_{\nu}, \varphi_{\nu}] + \mathcal{G}_{\nu}[\varphi_{\nu}]}_{\text{drifts}} + \underbrace{\mathcal{N}_{\nu}[g_{\nu}, \varphi_{\nu}]}_{\text{non-linear}} = \underbrace{\mathcal{C}_{\nu}[\{g_{\nu'}\}, \{\varphi_{\nu'}\}]}_{\text{collisions}}, \tag{3}$$

$$\partial_t g_{\nu} = \sum_{i=1}^3 (\partial_t g_{\nu})_i \begin{vmatrix} (\partial_t g_{\nu})_1 + \mathcal{D}_{\nu}[g_{\nu}, \varphi_{\nu}] + \mathcal{G}_{\nu}[\varphi_{\nu}] + \mathcal{N}_{\nu}[g_{\nu}, \varphi_{\nu}] = 0 \\ (\partial_t g_{\nu})_2 + \mathcal{M}_{\nu}[g_{\nu}] = 0 \\ (\partial_t g_{\nu})_3 + \mathcal{S}_{\nu}[g_{\nu}, \varphi_{\nu}] = 0 \end{vmatrix}$$

Algorithm

▶ Use operator splitting to solve normalised GK equation:

$$\frac{\partial g_{\nu}}{\partial t} + \underbrace{\mathcal{S}_{\nu}[g_{\nu}, \varphi_{\nu}]}_{\text{streaming}} + \underbrace{\mathcal{M}_{\nu}[g_{\nu}]}_{\text{mirror}} + \underbrace{\mathcal{D}_{\nu}[g_{\nu}, \varphi_{\nu}]}_{\text{drifts}} + \underbrace{\mathcal{N}_{\nu}[g_{\nu}, \varphi_{\nu}]}_{\text{non-linear}} = \underbrace{\mathcal{C}_{\nu}[\{g_{\nu'}\}, \{\varphi_{\nu'}\}]}_{\text{collisions}}, \tag{3}$$

$$\partial_t g_{\nu} = \sum_{i=1}^3 (\partial_t g_{\nu})_i \begin{vmatrix} (\partial_t g_{\nu})_1 + \mathcal{D}_{\nu}[g_{\nu}, \varphi_{\nu}] + \mathcal{G}_{\nu}[\varphi_{\nu}] + \mathcal{N}_{\nu}[g_{\nu}, \varphi_{\nu}] = 0 \\ (\partial_t g_{\nu})_2 + \mathcal{M}_{\nu}[g_{\nu}] = 0 \\ (\partial_t g_{\nu})_3 + \mathcal{S}_{\nu}[g_{\nu}, \varphi_{\nu}] = 0 \end{vmatrix}$$

▶ Geometric coefficients introduce coupling between different k_{α} . For example, the gyroaverage $\varphi_{\nu} = \langle \phi \rangle_{\mathbf{R}_{\nu}}$

Flux tube: Full flux annulus: *
$$\hat{\varphi}_{\mathbf{k},\nu} = J_{0,(k_{\psi},k_{\alpha}),\nu} \phi_{(k_{\psi},k_{\alpha})} \quad \hat{\varphi}_{\mathbf{k},\nu} = \sum_{k_{\alpha}'} \underbrace{\hat{J}_{(k_{\psi},k_{\alpha}-k_{\alpha}'),k_{\alpha}',\nu}}_{matrix} \hat{\phi}_{(k_{\psi},k_{\alpha}-k_{\alpha}')},$$

▶ Compute Fourier coefficients, $\hat{J}_{\mathbf{k}'',k'_{\alpha},\nu}$, of $J_{0,(k_{\psi},k_{\alpha}),\nu}$ once at the beginning of simulation for computational efficiency.

▶ stella is a fast GK code

- ▶ stella is a fast GK code
- ightharpoonup Electron dynamics imposes stringent CFL condition on time step ightharpoonup treat parallel streaming and mirror terms implicitly

- ▶ stella is a fast GK code
- ► Electron dynamics imposes stringent CFL condition on time step → treat parallel streaming and mirror terms implicitly
- \triangleright However, geometric-dependent coefficients add inhomogeneous α -dependence

$$\frac{\partial g_{\nu}}{\partial t} = -\underbrace{v_{\parallel} \hat{\boldsymbol{b}} \cdot \nabla z}_{\alpha\text{-dependent}} \underbrace{\left(\frac{\partial g_{\nu}}{\partial z} + \frac{Z_{\nu}e}{T_{\nu}} \frac{\partial \varphi_{s}}{\partial z} F_{0,\nu}\right)}_{\alpha\text{-dependent}}.$$
(4)

- ▶ stella is a fast GK code
- ightharpoonup Electron dynamics imposes stringent CFL condition on time step ightharpoonup treat parallel streaming and mirror terms implicitly
- ▶ Circumvent by splitting into implicit and explicit contributions:

$$\frac{\partial g_{\nu}}{\partial t} = -\underbrace{v_{\parallel} \hat{\boldsymbol{b}} \cdot \nabla z \left(\frac{\partial g_{\nu}}{\partial z} + \frac{Z_{\nu}e}{T_{\nu}} \frac{\partial \bar{J}\bar{\phi}}{\partial z} \bar{F}_{0,\nu} \right)}_{\text{Implicit}} - \underbrace{v_{\parallel} \hat{\boldsymbol{b}} \cdot \nabla z \frac{Z_{\nu}e}{T_{\nu}} \left[\frac{\partial \varphi_{\nu}}{\partial z} F_{0,\nu} - \frac{\partial \bar{J}\bar{\phi}}{\partial z} \bar{F}_{0,\nu} \right]}_{\text{Explicit}} - \underbrace{v_{\parallel} \left(\hat{\boldsymbol{b}} \cdot \nabla z - \hat{\boldsymbol{b}} \cdot \nabla z \right) \left(\frac{\partial g_{\nu}}{\partial z} + \frac{Z_{\nu}e}{T_{\nu}} \frac{\partial \varphi_{\nu}}{\partial z} F_{0,\nu} \right)}_{\text{Explicit}} \tag{4}$$

- ▶ stella is a fast GK code
- ightharpoonup Electron dynamics imposes stringent CFL condition on time step ightharpoonup treat parallel streaming and mirror terms implicitly
- ▶ Circumvent by splitting into implicit and explicit contributions:

$$\frac{\partial g_{\nu}}{\partial t} = -\underbrace{v_{\parallel} \hat{\mathbf{b}} \cdot \nabla z \left(\frac{\partial g_{\nu}}{\partial z} + \frac{Z_{\nu} e}{T_{\nu}} \frac{\partial \bar{J} \bar{\phi}}{\partial z} \bar{F}_{0,\nu} \right)}_{\text{Implicit}} - \underbrace{v_{\parallel} \hat{\mathbf{b}} \cdot \nabla z \frac{Z_{\nu} e}{T_{\nu}} \left[\frac{\partial \varphi_{\nu}}{\partial z} F_{0,\nu} - \frac{\partial \bar{J} \bar{\phi}}{\partial z} \bar{F}_{0,\nu} \right]}_{\text{Explicit}} - \underbrace{v_{\parallel} \left(\hat{\mathbf{b}} \cdot \nabla z - \hat{\mathbf{b}} \cdot \nabla z \right) \left(\frac{\partial g_{\nu}}{\partial z} + \frac{Z_{\nu} e}{T_{\nu}} \frac{\partial \varphi_{\nu}}{\partial z} F_{0,\nu} \right)}_{\text{Explicit}} \tag{4}$$

- ► Here $\hat{\boldsymbol{b}} \cdot \nabla z \doteq \frac{1}{2\pi} \int_0^{2\pi} d\alpha \left(\frac{1}{2\pi} \int_{\zeta_{\min}}^{\zeta_{\max}} \frac{d\zeta'}{\hat{\boldsymbol{b}} \cdot \nabla \zeta'} \right)^{-1}$ is an average over fieldlines
- ▶ $\bar{J} = \hat{J}_{(k_{\psi},0),k_{\alpha}}$ is the constant-in-alpha component of the Bessel function for a given k_{α}
- ▶ $\bar{\phi}$ is an artificial field that solves a modified quasineutrality condition (i.e. $\bar{\phi}$ is a contribution to ϕ that is treated implicitly) *

- ▶ stella is a fast GK code
- ightharpoonup Electron dynamics imposes stringent CFL condition on time step ightharpoonup treat parallel streaming and mirror terms implicitly
- ▶ Circumvent by splitting into implicit and explicit contributions:

$$\frac{\partial g_{\nu}}{\partial t} = -\underbrace{v_{\parallel} \hat{\boldsymbol{b}} \cdot \nabla z \left(\frac{\partial g_{\nu}}{\partial z} + \frac{Z_{\nu}e}{T_{\nu}} \frac{\partial \bar{J}\bar{\phi}}{\partial z} \bar{F}_{0,\nu} \right)}_{\text{Implicit}} - \underbrace{v_{\parallel} \hat{\boldsymbol{b}} \cdot \nabla z \frac{Z_{\nu}e}{T_{\nu}} \left[\frac{\partial \varphi_{\nu}}{\partial z} F_{0,\nu} - \frac{\partial \bar{J}\bar{\phi}}{\partial z} \bar{F}_{0,\nu} \right]}_{\text{Explicit}} - \underbrace{v_{\parallel} \left(\hat{\boldsymbol{b}} \cdot \nabla z - \bar{\boldsymbol{b}} \cdot \nabla z \right) \left(\frac{\partial g_{\nu}}{\partial z} + \frac{Z_{\nu}e}{T_{\nu}} \frac{\partial \varphi_{\nu}}{\partial z} F_{0,\nu} \right)}_{\text{Explicit}} \tag{4}$$

- ► Here $\hat{\hat{b}} \cdot \nabla z \doteq \frac{1}{2\pi} \int_0^{2\pi} d\alpha \left(\frac{1}{2\pi} \int_{\zeta_{\min}}^{\zeta_{\max}} \frac{d\zeta'}{\hat{b} \cdot \nabla \zeta'} \right)^{-1}$ is an average over field lines
- ▶ $\bar{J} = \hat{J}_{(k_{\psi},0),k_{\alpha}}$ is the constant-in-alpha component of the Bessel function for a given k_{α}
- ▶ $\bar{\phi}$ is an artificial field that solves a modified quasineutrality condition (i.e. $\bar{\phi}$ is a contribution to ϕ that is treated implicitly) *

Table of Contents

- 1. Motivation
- 2. Real Space Formalism
- 3. Flux Tube Formalism
- 4. Flux Annulus Formalism
- 5. Code

6. Results

Expectations and results

▶ Comparing code with axisymmetric geometry

Expectations and results

- ► Comparing code with axisymmetric geometry
- ▶ CBC looks like stellarator in non-tokamak coordinates
- ▶ Flux tube and FFS simulations should agree as $N_y \to \infty$ and $\rho_* \to 0$

Expectations and results

- ▶ Comparing code with axisymmetric geometry
- ▶ CBC looks like stellarator in non-tokamak coordinates
- ▶ Flux tube and FFS simulations should agree as $N_y \to \infty$ and $\rho_* \to 0$

Figure 1: ρ_* scans in CBC with adiabatic electrons

Simulation results: CBC, adiabatic electrons

- ► Comparing code with axisymmetric geometry
- ▶ Use modified Boltzmann response $\delta n_e = \frac{en_e}{T_e} (\phi \langle \phi \rangle_{\text{FSA}})$, where $\langle \phi \rangle_{\text{FSA}}$ is the flux-surface-averaged ϕ

Simulation results: CBC, adiabatic electrons

- ► Comparing code with axisymmetric geometry
- ▶ Use modified Boltzmann response $\delta n_e = \frac{en_e}{T_e} (\phi \langle \phi \rangle_{\text{FSA}})$, where $\langle \phi \rangle_{\text{FSA}}$ is the flux-surface-averaged ϕ

Figure 2: Linear simulations for CBC with modified electron response; $N_y=N_x=30,$ $\rho_*=0.025$

Simulation results: CBC, adiabatic electrons

- ► Comparing code with axisymmetric geometry
- ▶ Use modified Boltzmann response $\delta n_e = \frac{en_e}{T_e} (\phi \langle \phi \rangle_{FSA})$, where $\langle \phi \rangle_{FSA}$ is the flux-surface-averaged ϕ

Figure 2: Non-linear simulations for CBC; $N_y = N_x = 30, \, \rho_* = 0.025$

Simulation results: CBC, kinetic electrons

► Add in kinetic electrons

Simulation results: CBC, kinetic electrons

► Add in kinetic electrons

Figure 3: Linear simulations for CBC with kinetic electrons; $N_y = N_x = 30$, $\rho_* = 0.025$

Simulation results: CBC, kinetic electrons

▶ Add in kinetic electrons

Figure 3: Non-linear simulations for CBC with kinetic electrons; $N_y=30, N_x=150, \rho_*=0.025$

Expectations and results

- \triangleright Anticipate that including higher k_{α} leads to a global growth rate
- ▶ Growth rate should be some average of the most unstable mode across all field lines

▶ Impose that each field line in FFS has the same geometry to benchmark algorithm

▶ Impose that each field line in FFS has the same geometry to benchmark algorithm

- ▶ Impose that each field line in FFS has the same geometry to benchmark algorithm
- ► Modified adiabatic electrons

Figure 4: Linear simulations for W7-X geometry with modified adiabatic electrons testing algorithm; $N_y=N_x=72,\,\rho_*=0.01$

- ▶ Impose that each field line in FFS has the same geometry to benchmark algorithm
- ► Modified adiabatic electrons

Figure 4: Non-linear simulations for W7-X geometry with modified adiabatic electrons; $N_y=N_x=30,\; \rho_*=0.025$

- ▶ Impose that each field line in FFS has the same geometry to benchmark algorithm
- ► Add in kinetic electrons

Figure 4: Linear simulations for W7-X geometry with kinetic electrons; $N_y=N_x=30,$ $\rho_*=0.025$

- ▶ Impose that each field line in FFS has the same geometry to benchmark algorithm
- ▶ Add in kinetic electrons

Figure 4: Non-linear simulations for W7-X geometry with kinetic electrons; $N_y=N_x=64,\; \rho_*=0.05333$

Simulation results: W7-X geometric variation

▶ How does geometric variation modify simulation results?

Simulation results: W7-X geometric variation

▶ How does geometric variation modify simulation results?

Figure 5: Linear simulations for W7-X geometry with modified adiabatic electrons including full flux effects; $N_y=N_x=72,\,\rho_*=0.01$

Simulation results: W7-X geometric variation

▶ How does geometric variation modify simulation results?

Figure 5: Non-linear simulations for W7-X geometry with modified adiabatic electrons $N_y=N_x=72,\; \rho_*=0.01$

Simulation results: code efficiency

Implicit vs. explicit

- \blacktriangleright A time-step of 1E–006 is needed to run explicit kinetic electron simulations for W7-X \to still numerically unstable
- ▶ Implicit treatment of parallel streaming allows for time-step of 5E-002

Simulation results: code efficiency

Implicit vs. explicit

- \blacktriangleright A time-step of 1E–006 is needed to run explicit kinetic electron simulations for W7-X \to still numerically unstable
- ▶ Implicit treatment of parallel streaming allows for time-step of 5E-002

Flux tube vs. full flux annulus

- \blacktriangleright Currently full-flux code takes $\sim \times 4/5$ longer to run compared with flux tube simulations
- ▶ Non-linear simulations with adiabatic electrons:

Flux tube	Full flux algorithm	Full flux with geometric variation
$218.03 \min$	562.15 min	$794.66 \min$
$\times 1$	×2.6	$\times 3.7$

- Like-for-like resolutions: 12 nodes, 576 cores, 2000 normalised times steps
- ▶ Anticipate with optimisation this can be reduced to $\sim \times 3$

Summary and future work

Summary

- There is a need in the community to accurately simulate turbulence on an entire flux surface for non-axisymmetric devices
- ▶ We have developed an algorithm to deal with full-flux effects in arbitrary geometry
- ▶ We are getting some promising results
- ► There is still work to be done
- ▶ The code is currently being checked, and optimised

Summary and future work

Summary

- There is a need in the community to accurately simulate turbulence on an entire flux surface for non-axisymmetric devices
- ▶ We have developed an algorithm to deal with full-flux effects in arbitrary geometry
- ▶ We are getting some promising results
- ► There is still work to be done
- ▶ The code is currently being checked, and optimised

Future Work

- ▶ Finish off FFS code, and benchmark with other GK codes
- ▶ Investigate if/how zonal flows are supported in stellarators

Backup slides: Derivation of twist-and-shift boundary conditions

$$A(t, x, y, z) = \sum_{k} \hat{A}_{k_x, k_y}(t, z) e^{ik_y(y - y_0) + ik_x(x - x_0)}$$
(5)

Set $y_0 = 0$, $x_0 = 0$ $A(t, x, y(x, \theta, z), z) = A(t, x, y'(\theta, z + 2p\pi), z + 2p\pi)$ But $y = y(\theta, z)$

$$\sum_{k} \hat{A}_{k_x, k_y}(t, z) e^{ik_y y + ik_x x} = \sum_{k} \hat{A}_{k_x, k_y}(t, z') e^{ik_y (y'(\theta, z')) + ik_x x}$$
(6)

So $y'(\theta,z') = y + \frac{\partial y}{\partial x} 2\pi p = y + 2\pi p \frac{\partial y}{\partial \alpha} \frac{\partial \alpha}{\partial z} = y - 2\pi p \iota(\psi) \frac{\partial y}{\partial \alpha}$ Remembering $\iota(\psi) = \iota(\psi_0) + \iota' \frac{\partial \psi}{\partial x}$ so $y' = y - 2\pi p \iota(\psi_0) \frac{\partial y}{\partial \alpha} - 2(x - x_0)\pi p \iota' \frac{\partial y}{\partial \alpha} \frac{\partial \psi}{\partial x}$

$$\sum_{k} \hat{A}_{k_{x},k_{y}}(t,z)e^{ik_{y}y+ik_{x}x} = \sum_{k} \hat{A}_{k_{x},k_{y}}(t,z+2\pi p)e^{ik_{y}y+i(k_{x}-2\pi p\iota'\frac{\partial y}{\partial\alpha}\frac{\partial\psi}{\partial x}k_{y})x'-i2\pi pk_{y}\iota p\frac{\partial y}{\partial\alpha}}$$

$$(7)$$

Let $\delta k_x = 2\pi p \iota' \frac{\partial y}{\partial \alpha} \frac{\partial \psi}{\partial x} k_y$ and $\Delta = -2\pi p k_y \iota \frac{\partial y}{\partial \alpha}$

$$\sum_{k} \hat{A}_{k_x, k_y}(t, z) e^{ik_y y + ik_x x} = \sum_{k} \hat{A}_{k_x, k_y}(t, z + 2\pi p) e^{ik_y y + i(k_x - \delta k_x)x'} e^{i\Delta}$$
(8)

So relate $k_x = k_x' - 2\pi p \iota' \frac{\partial y}{\partial \alpha} \frac{\partial \psi}{\partial x} k_y$

Backup slides: Response matrix

$$\phi^{n+1} = \left[\sum_{\nu} \frac{Z_{\nu}^{2} n_{\nu}}{T_{\nu}} (1 - \Gamma_{0,\nu}) \right]^{-1} \sum_{\nu} Z_{\nu} n_{\nu} \frac{2B}{\pi^{1/2}} \int_{-\infty}^{\infty} dv_{\parallel} \int_{0}^{\infty} d\mu J_{0,\nu} g_{\nu}^{n+1}$$
(9)

Let $g^{n+1} = g_{\text{hom}}^{n+1} + g_{\text{inhom}}^{n+1}$

$$\frac{g_{\text{inhom}}^{n+1} - g^n}{\Delta t} = -v_{\parallel} \hat{\boldsymbol{b}} \cdot \nabla z \left(\frac{\partial g_{\text{inhom}}^{n+1}}{\partial z} + \frac{Z_{\nu}}{T_{\nu}} \frac{\partial J_0 \phi^n}{\partial z} F_{0,\nu} \right)$$
(10)

$$\frac{g_{\text{hom}}^{n+1} - g^n}{\Delta t} = -v_{\parallel} \hat{\boldsymbol{b}} \cdot \nabla z \left(\frac{\partial g_{\text{hom}}^{n+1}}{\partial z} + \frac{Z_{\nu}}{T_{\nu}} \frac{\partial J_0 \phi^{n+1}}{\partial z} F_{0,\nu} \right)$$
(11)

Then

$$g^{n+1} = \sum \frac{\delta g_{\text{hom}}}{\delta \phi} \phi^{n+1} + g_{\text{inhom}}^{n+1}$$
 (12)

Substitute into quasineutrality equation and solve for ϕ^{n+1}

$$\left[I - Q \sum \frac{\delta g_{\text{hom}}}{\delta \phi}\right] \phi^{n+1} = \phi_{\text{inhom}}^{n+1} \tag{13}$$

With I the identity, $Q = \sum_{\nu} Z_{\nu} n_{\nu} \frac{2B}{\pi^{1/2}} \int_{-\infty}^{\infty} dv_{\parallel} \int_{0}^{\infty} d\mu J_{0,\nu}$, and $\phi_{\text{inhom}}^{n+1} = Q g_{\text{inhom}}^{n+1}$

Backup slides: Eigenmode chains

*

Backup slides: Bessel functions

Explicitly expanding the gyroaveraged electrostatic potential in Fourier harmonics:

$$\varphi_{\nu} = \sum_{\mathbf{k''}} e^{i\mathbf{k''} \cdot \mathbf{R}} J_0(a_{\mathbf{k''},\nu}) \hat{\phi}_{\mathbf{k''}}, \tag{14}$$

with

$$a_{\mathbf{k''},\nu} = \frac{ck''_{\perp}(\alpha,z)}{Z_{\nu}e} \sqrt{\frac{2m_{\nu}\mu}{B(\alpha,z)}}.$$
(15)

Both k_{α} and α appear. For axisymmetric systems, the α dependence is absent and so gyro-averaging is a local operation in k_{α} -space. Now there is coupling between modes with different k_{α} . Expanding the Bessel function:

$$\hat{\varphi}_{\mathbf{k},\nu} = \int d^2 \mathbf{R} \sum_{\mathbf{k}'',\mathbf{k}'} e^{i\left(k''_{\psi} - k_{\psi}\right)\psi} e^{i\left(k'_{\alpha} + k''_{\alpha} - k_{\alpha}\right)\alpha} \hat{J}_{\mathbf{k}'',k'_{\alpha},\nu} \hat{\phi}_{\mathbf{k}''}, \tag{16}$$

where we have used

$$J_0(a_{\mathbf{k}'',\nu}) = \sum_{k'} \hat{J}_{\mathbf{k}'',k'_{\alpha},\nu}(z,\mu) e^{ik'_{\alpha}\alpha}.$$
 (17)

Making use of the orthogonality of the Fourier harmonics:

$$\hat{\varphi}_{\mathbf{k},\nu} = \sum_{k'} \hat{J}_{(k_{\psi},k_{\alpha}-k'_{\alpha}),k'_{\alpha},\nu} \hat{\phi}_{(k_{\psi},k_{\alpha}-k'_{\alpha})}. \tag{18}$$

Backup slides: $\bar{\phi}$ equation

*

▶ If we let $Q = J_0(k_{\perp})B(\alpha)$ and Fourier decompose we get:

$$Q = \sum_{k'_{\alpha}} \hat{Q}_{k_{\alpha}, k'_{\alpha}} e^{ik'_{\alpha}y} \tag{19}$$

- ▶ Define \bar{Q} to be the $k'_{\alpha} = 0$ component of this
- ► Take a similar approach for $\Delta(k_{\perp}) \doteq \sum_{\nu} \frac{Z_{\nu}^2 n_{\nu}}{T_{\nu}} (1 \Gamma_{0,\mathbf{k}})$

$$\Delta = \sum_{k'_{\alpha}} \hat{\Delta}_{k_{\alpha}, k'_{\alpha}} e^{ik'_{\alpha}y} \tag{20}$$

- $ightharpoonup \bar{\Delta}$ being the $k'_{\alpha} = 0$ component
- ▶ Putting everything together we get the equation for $\bar{\phi}$

$$\bar{\Delta}_{\mathbf{k}}\bar{\phi}_{\mathbf{k}} = \sum Z_{\nu}n_{\nu} \int d\nu_{\parallel} \int d\mu \bar{Q}_{\mathbf{k}}g_{\mathbf{k}}$$
 (21)