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What is the role of turbulent self-
interaction in ITB formation?
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Self-interaction – the nonlinear interaction of turbulent eddy with itself

• J. Ball et al. 2020 Journal of Plasma Physics 86(2), 905860207
• Ajay CJ, Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion 

plasmas using gyrokinetic simulations, Thesis EPFL Lausanne, 2020
• J. Dominski et al. 2015 Physics of Plasmas 22, 062303 
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𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 - adjusted to safety factor

23• J. Ball et al. 2020 Journal of Plasma Physics 86(2), 905860207

𝑞𝑞 = 2 =
2
1
→  𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 = 1

𝑞𝑞 = 2.5 =
5
2
→  𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 = 2

𝑞𝑞 = 2.125 =
17
8
→  𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 = 8

Lowest order 
rational surfaces
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𝑞𝑞 ⇔ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝  𝑎𝑎𝑎𝑎𝑎𝑎 ∆𝑦𝑦

First pass

Δ𝑦𝑦 ≠ 0 Δ𝑦𝑦

Shift: Δ𝑦𝑦

Boundary condition: 𝐴̂𝐴𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦(𝑧𝑧) = 𝐶𝐶 Δ𝑦𝑦 𝐴̂𝐴𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦(z + 2π)
Phase factor: 𝐶𝐶 Δ𝑦𝑦 ≠ 1



• 𝛽𝛽 = 10−4

• Kinetic electrons (!)
• Two cases – Cyclone Base Case (CBC) or pure ITG (pITG) drive

27

Usual simulation parameters

2.22

• Dimits et al. 2000, Physics of Plasmas 7, 969



Outline

28

• Motivation and background
• Methods
• Numerical results:

• Low magnetic shear simulations
• Ultra-long turbulent eddies 𝑠̂𝑠 = 0
• Non-uniform magnetic shear simulations

• Conclusions



29

Heat flux at finite shear

Self-interaction 
trends at low 
shear agree with 
previous study at 
𝑠̂𝑠 = 0.8
• J. Ball et al. 2020 Journal of Plasma 

Physics 86(2), 905860207

Magnetic shear
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By increasing domain length

Magnetic shear
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Heat flux increases
with 𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑 Due to 

finite eddy 
length
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Radial plasma profiles at 𝑠̂𝑠 = 0.1

Magnetic shear
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Profile corrugations

�𝒔𝒔 = 𝟎𝟎.𝟏𝟏
𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑 = 𝟏𝟏

Perturbed
ion temperature 

gradient

Perturbed
density gradient

Perturbed
electron 

temperature 
gradient

∝ 𝜕𝜕𝑥𝑥 𝛿𝛿𝑛𝑛 𝑦𝑦,𝑧𝑧,𝑡𝑡

Order of rational 
surface

𝑥𝑥/𝜌𝜌𝑖𝑖
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Profile corrugations

Perturbed
ion temperature 

gradient

Perturbed
electron 

temperature 
gradient

Profile 
steepening 
by 50 %

Perturbed
density gradient

�𝒔𝒔 = 𝟎𝟎.𝟏𝟏
𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑 = 𝟏𝟏

𝑥𝑥/𝜌𝜌𝑖𝑖

Positive → flattening
Negative → steepening
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Profile steepening at integer surface

�𝒔𝒔 = 𝟎𝟎.𝟏𝟏
𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑 = 𝟏𝟏

𝑥𝑥/𝜌𝜌𝑖𝑖
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Perturbed
ion temperature 

gradient

Perturbed
electron 

temperature 
gradient

Perturbed
density gradient

𝑥𝑥/𝜌𝜌𝑖𝑖

Estimate of eddy length with 𝑠̂𝑠
Based on the highest 

order rational 
surfaces with 

significant zonal 
structures
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Estimate of eddy length with 𝑠̂𝑠
Pa

ra
lle

l l
en

gt
h 

Magnetic shear

Due to magnetic 
drifts and FLR 
effects parallel 

eddy length 
scales like

𝑠̂𝑠−1

Based on the highest 
order rational 
surfaces with 

significant zonal 
structures
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• Self-interaction follows the same paradigm as 
established in previous work

• Eddies extend in the parallel direction when 
shear is reduced as 𝑠̂𝑠−1

• Profile corrugations appear at multiple rational 
surfaces 

• Simulations become computationally 
expensive as shear is reduced [𝐿𝐿𝑥𝑥 ∝ (𝑘𝑘𝑦𝑦𝑠̂𝑠)−1]
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Summary: Finite shear study
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Ultra-long turbulent eddies 𝑠̂𝑠 = 0

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 = 171Parallel correlation
along field lines

𝑧𝑧 / 𝜋𝜋
• A. Volčokas et al. 2023 Nucl. Fusion 63 014003
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pITG heat flux and correlation
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• A. Volčokas et al. 2023 Nucl. Fusion 63 014003

Periodic parallel 
boundary condition 

(∆𝑦𝑦 = 0)
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pITG heat flux and correlation

Kinetic electrons 
are key
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• A. Volčokas et al. 2023 Nucl. Fusion 63 014003

Periodic parallel 
boundary condition 

(∆𝑦𝑦 = 0)
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Electrons set eddy length
How far electrons travel over 
turbulent time scale sets the 

parallel eddy size.

• A. Volčokas et al. 2023 Nucl. Fusion 63 014003
• M. Barnes, F. I. Parra, and A. A. Schekochihin, Phys. Rev. Lett. 107, 115003 (2011)
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𝑚𝑚𝑖𝑖/𝑚𝑚𝑒𝑒 ≈ 60

𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≈ 3 𝑅𝑅/𝑐𝑐𝑖𝑖

BBB𝐿𝐿∥ ≈  𝑣𝑣𝑡𝑡𝑡,𝑒𝑒𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐿𝐿∥
𝐿𝐿𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝=1

≈ 20
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Check with heavier electrons
How far electrons travel over 
turbulent time scale sets the 

parallel eddy size.
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• A. Volčokas et al. 2023 Nucl. Fusion 63 014003
• M. Barnes, F. I. Parra, and A. A. Schekochihin, Phys. Rev. Lett. 107, 115003 (2011)

𝑚𝑚𝑖𝑖/𝑚𝑚𝑒𝑒 ≈ 60

𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≈ 3 𝑅𝑅/𝑐𝑐𝑖𝑖

𝐿𝐿∥ ≈  𝑣𝑣𝑡𝑡𝑡,𝑒𝑒𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐿𝐿∥
𝐿𝐿𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝=1

≈ 20
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CBC heat flux and correlation

Similar picture to pITG
To

ta
l h

ea
t f

lu
x

Pa
ra

lle
l c

or
re

la
tio

n

• A. Volčokas et al. 2023 Nucl. Fusion 63 014003
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Parallel waves

Long parallel waves
 𝜆𝜆 ≈ 20 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 appear
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• A. Volčokas et al. 2023 Nucl. Fusion 63 014003
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Long parallel wave-like structures

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 ≈ 20
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Robustness of ultra-long turbulent eddies
 

• Collisions do not reduce ultra-long eddy length but 
eliminate parallel waves

• No plasma shaping (elongation or triangularity) 
effects on ultra-long eddies

 Ultra-long eddies seem to be a robust plasma 
feature at low magnetic shear 𝑠̂𝑠 ≪ 1.
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Summary: Eddy parallel length study
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• Simulations with kinetic electrons at zero magnetic shear 
require hundreds of poloidal turns to achieve 
convergence

• Kinetic electrons set the parallel turbulence length scale
• Heat flux is reduced when eddies are unable to self-

interact
• In simulations with electron temperature gradient long 

parallel waves emerge
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Summary: Eddy parallel length study



Parallel boundary shift
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𝑞𝑞 = 2.01∆𝑦𝑦 ≈ 5𝜌𝜌𝑖𝑖



• Turbulence can be strongly 
affected by the magnetic 
field topology, leading to 
complete stabilization in 

some cases.
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• A. Volčokas et al. 2023 Nucl. Fusion 63 014003
• D. St-Onge et al. 2023 Plasma Phys. Control. Fusion 65 015016
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Binormal shift ∆ 𝑦𝑦 when 𝑠̂𝑠 = 0 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 = 1 



• Turbulence can be strongly 
affected by the magnetic 
field topology, leading to 
complete stabilization in 

some cases.

Li
ne

ar
 g

ro
w

th
 ra

te

To
ta

l e
le

ct
ro

st
at

ic
 h

ea
t f

lu
x

• A. Volčokas et al. 2023 Nucl. Fusion 63 014003
• D. St-Onge et al. 2023 Plasma Phys. Control. Fusion 65 015016

61

Binormal shift ∆ 𝑦𝑦 when 𝑠̂𝑠 = 0 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 = 1 



• Turbulence can be strongly 
affected by the magnetic 
field topology, leading to 
complete stabilization in 

some cases.

Li
ne

ar
 g

ro
w

th
 ra

te

To
ta

l e
le

ct
ro

st
at

ic
 h

ea
t f

lu
x

• A. Volčokas et al. 2023 Nucl. Fusion 63 014003
• D. St-Onge et al. 2023 Plasma Phys. Control. Fusion 65 015016

62

Binormal shift ∆ 𝑦𝑦 when 𝑠̂𝑠 = 0 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 = 1 

Phase factor 
impact 

diminishes with 
parallel length
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Binormal shift ∆ 𝑦𝑦 when 𝑠̂𝑠 = 0 
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• Turbulence can be strongly 
affected by the magnetic 
field topology, leading to 
complete stabilization in 

some cases.

• A single eddy can cover an 
entire flux surface leading 

to reduced flux
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Binormal shift ∆ 𝑦𝑦 when 𝑠̂𝑠 = 0 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 = 1 
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“Eddy squeezing”

q=2.5 q=2.7
𝑠̂𝑠 = 0

Perpendicular self-interaction



• A. Volčokas et al. 2023 Nucl. Fusion 63 014003 66

Potential and binormal correlation
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𝑦𝑦/𝜌𝜌𝑖𝑖𝑦𝑦/𝜌𝜌𝑖𝑖
@𝑡𝑡 = 200 𝑅𝑅/𝑐𝑐𝑖𝑖

𝑥𝑥/
𝜌𝜌 𝑖𝑖

• Increased electron mass
• 𝑘𝑘𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚𝜌𝜌𝑖𝑖 = 0.0125
• Two-fold change in the heat flux
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Summary: Binormal shift study 𝑠̂𝑠 = 0 
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in particular close to rational-q
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Summary: Binormal shift study 𝑠̂𝑠 = 0 



• Allows to study self-interaction at irrational q values and 
in particular close to rational-q

• Small changes in q can have a large impact on the fluxes
• Different behaviour depending on the turbulence drive
• Provides experimentally testable predictions regarding 

turbulence self-organization in tokamak core
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Summary: Binormal shift study 𝑠̂𝑠 = 0 
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Non-uniform magnetic shear formalism

• J. Ball and S. Brunner 2023 Plasma Phys. Control. Fusion 65 014004

Key idea: 
Create a safety factor profile that 

varies on the gyroradius-scale, which 
is rigorously derived from a current 

drive source inspired by ECCD

• The simulations are no longer 
“local” but still performed in a 
flux tube domain
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• Increase realism
• Investigate electromagnetic effects
• Investigate extremely low magnetic shear
• Include safety factor curvature effects
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• Increase realism
• Investigate electromagnetic effects
• Investigate extremely low magnetic shear
• Include safety factor curvature effects

Simulate the minimum in the safety factor profile
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Full safety factor profile

Linear shear 
part

�𝑞𝑞 − 𝑞𝑞0
𝜌𝜌∗

=
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𝑞𝑞0
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Safety factor profile
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Full safety factor profile

Linear shear 
part

Non-uniform shear 
part

�𝑞𝑞 − 𝑞𝑞0
𝜌𝜌∗

=
𝑟𝑟
𝑞𝑞0
𝑠̂𝑠𝑥𝑥 + �𝑞𝑞 𝑥𝑥

Safety factor profile
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Full safety factor profile

Linear shear 
part

Non-uniform shear 
part

Correction due to 
zonal part of the 

magnetic potential

�𝑞𝑞 − 𝑞𝑞0
𝜌𝜌∗

=
𝑟𝑟
𝑞𝑞0
𝑠̂𝑠𝑥𝑥 + �𝑞𝑞 𝑥𝑥 + �𝑞𝑞𝛿𝛿𝐴𝐴∥(𝑥𝑥)

Safety factor profile
𝛿𝛿𝑩𝑩 = 𝛻𝛻 × 𝛿𝛿𝐴𝐴
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Close to an integer surface
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Away from an integer surface
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q profile impact on heat flux
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Profile steepening
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Summary: Non-uniform shear study
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Summary: Non-uniform shear study



• Strong profile corrugations and reduction in transport 
when minimum 𝑞𝑞 is close to low order rational 

• Corrugations follow low order rational surfaces
• Electromagnetic effects can widen the “region of 

rationality”
• Global simulations to confirm observed behaviour
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Summary: Non-uniform shear study
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• Methods
• Numerical results:

• Low magnetic shear simulations
• Ultra-long turbulent eddies 𝑠̂𝑠 = 0
• Non-uniform magnetic shear simulations

• Conclusions
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Conclusions
• Kinetic electrons are critical for accurately modelling surfaces 

with low magnetic shear 
• As magnetic shear is reduced extreme profile corrugations 

appear as turbulent eddies become more than one poloidal 
turn long

• Ultra-long turbulent eddy length is not affected by collisions 
or plasma equilibrium shaping

• Electromagnetic effects correct imposed safety factor profile 
and extend the “region of rationality”

• Formation of rudimentary transport barriers was observed

Thank you for your attention!
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