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Electron Cyclotron Current Drive in DEMO Plasmas
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The European DEMO [Fus. Eng. Des., Special Issue, 2022]
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[Kembleton 22] 

One (recent) possible incarnation…
 “DEMO is the nearest-term reactor design to 

follow ITER” which means for the development 

strategy “modest extrapolation from the ITER 

physics & technology basis” [Ciattaglia 17; 

Federici 21]

 DEMO aims to demonstrate the production of 

net electricity (ca. 500 MW i.e. ca. 2 GW fusion 

power), tritium self-sufficiency and the adoption 

of maintenance systems capable of achieving 

adequate plant availability

 The present design point is a trade-off between 

the most mature knowledge in physics and 

technology, the emphasis on the problem of the 

power exhaust and the attention given to 

nuclear design integration, and “not an a priori 

desire to be big”



 Electron Cyclotron (EC) waves are routinely used in magnetically confined plasmas for heating and 

current drive and as a diagnostic tool (passive and active)

 Typical frequencies:                                                                                ( ITER EC system: 170 GHz) 

 Advantages of EC waves: 

• EC waves propagate also in the limit of vanishing density (vacuum) → no coupling issue

• Absorption location tuneable, narrow deposition profiles possible → “surgical” applications

• Complete absorption for a proper choice of frequency and polarization

• Well-collimated beams injected → require small apertures in the vacuum vessel → easier neutron shielding, 

small impact on tritium breeding

• In general, mature theoretical, experimental and technological knowledge for fusion devices

 Disadvantages of EC waves:

• Expensive 1-2 MW, >100 GHz sources, more prone to failure than sources for waves in other frequency ranges

• No sources yet above ca. 200 GHz

• ECCD efficiency might be too low for steady state operation → see later
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Electron Cyclotron Waves
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 EC system foreseen for a variety of applications in ITER ← requires flexible design

 DEMO will require less flexibility in terms of targeted applications and possible plasma scenarios
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Electron Cyclotron System in ITER 
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ITER equatorial EC launcher

[Henderson 15]



 Different options explored in the last years, including steady-state 

plasma scenarios → high recirculating power required to 

sustain the plasma current non-inductively

 Present design focus on a pulsed machine (2h), no need for bulk 

current drive

 Electron cyclotron heating & current drive mostly for breakdown, 

ramp control, bulk heating [poster Ch. Tsironis], NTM control, and 

radiative-instability control
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Electron Cyclotron System in DEMO
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The theoretician’s view: it is very simple…
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Beam path

TORBEAM code 

[Poli 01 & 18]

Power deposition profile

 Example of EC wave simulation for the ASDEX Upgrade tokamak (remember Ωe ~ B ~ 1/R)

injection (nearly) 
perpendicular to 
magnetic field
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TORBEAM code 

[Poli 01 & 18]

 For a given wave frequency, shift the deposition location 

by steering the beam through the launch angles 

(requires in general movable mirrors)

Power deposition profile

Beam path

 Example of EC wave simulation for the ASDEX Upgrade tokamak (remember Ωe ~ B ~ 1/R)

injection (nearly) 
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magnetic field



 Fundamental role of relativistic effects (Lorentz factor                               ) and Doppler shift

 Resonance curves in velocity space are ellipses intersecting the u|| axis at

 u||- moves towards the Maxwellian bulk as the beam propagates towards the HFS (increasing Ω/ω)
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The relativistic resonance condition
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injection angle)



 Fundamental role of relativistic effects (Lorentz factor                               ) and Doppler shift

 Resonance curves in velocity space are ellipses intersecting the u|| axis at

 Pinch point (first point in resonance) [Harvey 97]

 Increasing N|| moves the absorption location to the LFS and shifts the resonance on more 

energetic (less collisional) electrons → higher current drive efficiency, weaker absorption
1 2

The relativistic resonance condition
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The relativistic resonance condition
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 Electron cyclotron waves increase the perpendicular velocity of the resonant electrons

 The asymmetric (with respect to v||) change in collisionality leads to a current parallel to the magnetic 

field [Fisch & Boozer 80]

 A current can be generated without the direct injection of parallel momentum [Fisch & Boozer 80]
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Fisch-Boozer mechanism and current drive efficiency
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[From Fisch 87] (check)
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of different momentum 

destruction rate for ① and ②average over 

Instantaneous current

[Fisch 87]



 Electron cyclotron waves increase the perpendicular velocity of the resonant electrons

 The asymmetric (with respect to v||) change in collisionality leads to a current parallel to the magnetic 

field [Fisch & Boozer 80]

 For Coulomb collisions in a plasma:

 The current drive efficiency η=j/p scales roughly like 
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Fisch-Boozer mechanism and current drive efficiency
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average over 
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 Fundamental question: How much current can be driven by EC waves? 

 Direct answer for a given scenario by scanning the parameter space (injection position, injection 

angles, wave frequency)

 First example [Poli 13]
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Optimizing the bulk current drive in DEMO
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Top launch, freq = 230 GHzEquatorial launch, pol. injection angle α = 0
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ρdep=const.



 Fundamental question: How much current can be driven by EC waves? 

 Direct answer for a given scenario by scanning the parameter space (injection position, injection 

angles, wave frequency)

 First example [Poli 13]

1 8

Optimizing the bulk current drive in DEMO

M A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  E .  P O L I  |  E F T C  C O N F E R E N C E ,  O C T O B E R 2 - 5 ,  2 0 2 3

Top launch, freq = 230 GHzEquatorial launch, pol. injection angle α = 0

contours 

ρdep=const.



 High ECCD efficiency obtained for large N || → high wave frequency (ca. 1.4 x cold resonance frequency, 

typically > 200 GHz) required to compensate the Doppler shift and keep the absorption region near the 

plasma centre: technology challenge 

 For top launch, the change in R (hence in Ωe) along the beam path is slower than for equatorial launch → 

the resonance curve lingers on high-velocity electrons → improved ECCD efficiency [cf. Karney & Fisch 81]

 Increase in ECCD efficiency for top-launch scheme recently demonstrated at DIII-D [Chen 22]
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 High ECCD efficiency obtained for large N || → high wave frequency (ca. 1.4 x cold resonance frequency, 

typically > 200 GHz) required to compensate the Doppler shift and keep the absorption region near the 

plasma centre: technology challenge 

 For top launch, the change in R (hence in Ωe) along the beam path is slower than for equatorial launch → 

the resonance curve lingers on high-velocity electrons → improved ECCD efficiency [cf. Karney & Fisch 81]

 Increase in ECCD efficiency for top-launch scheme recently demonstrated at DIII-D [Chen 22]
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 The ECCD efficiency cannot be optimized by increasing the electron temperature indefinitely: absorption 

by next harmonic kicks in (parasitic absorption) → ECCD efficiency saturation at ca. Te = 30 keV [cf. 

Harvey 97 for ITER]

 Parasitic absorption occurs both before the lower harmonic becomes accessible and at the location 

where it is accessible [harmonic overlap, Smith 87]

 Typical value of achievable central ECCD in favourable scenarios: 50 kA/MW

2 1

ECCD efficiency saturation with increasing Te
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 In the optimization strategy shown before, the maximum achievable ECCD efficiency is determined by 

scanning the parameter space (several thousands of runs, each requiring ca 1 s)

 Pro’s: accurate evaluation; Con’s: Too time consuming for a repeated evaluation in a larger loop over 

tokamak parameters (optimization); not possible if equilibrium and profiles are not available (like in 

systems codes, 0D)
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Can we predict the maximum ECCD from global parameters?
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 In the optimization strategy shown before, the maximum achievable ECCD efficiency is determined by 

scanning the parameter space (several thousands of runs, each requiring ca 1 s)

 Pro’s: accurate evaluation; Con’s: Too time consuming for a repeated evaluation in a larger loop over 

tokamak parameters (optimization); not possible if equilibrium and profiles are not available (like in 

systems codes, 0D)

 Infer maximum ECCD current if only global parameters are known from single numerical evaluation of 

the ECCD efficiency at a “representative point”

 Fundamental idea: the maximum ECCD is a trade-off between two competing effects

 Need for high-energy (low-collisionality) electrons → favours resonance on the tail of the 

distribution

 Need for sufficiently high absorption → favours resonance on the bulk

 Strategy implemented in the module HARE coupled to the PROCESS systems code → typical runtime 

0.1 ms [Poli 18]
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Can we predict the maximum ECCD from global parameters?
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 Very good agreement with full TORBEAM optimization 
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HARE (Hare Analyses Reactor ECCD)
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 ASTRA steady-state scenario: B=5.8 T, R=8.4 m, a=2.88 m, Zeff =1.48, strong off-axis CD with 50 kA/MW
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Can we replace the inductive current with ECCD?
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 ASTRA steady-state scenario: B=5.8 T, R=8.4 m, a=2.88 m, Zeff =1.48, strong off-axis CD with 50 kA/MW

 High central ECCD deteriorates with radius due to trapped particles and unfavourable Te/ne 

 Replacing the inductive current with ECCD becomes inefficient in the outer part of the plasma column

 NBCD increases with trapped particle fraction and Zeff [cf. Wagner 10 on ITER]

 Required heating power (> 170 MW) too high 
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Can we replace the inductive current with ECCD?

M A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  E .  P O L I  |  E F T C  C O N F E R E N C E ,  O C T O B E R 2 - 5 ,  2 0 2 3

110 MW only on 

prof9 and prof10
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Stabilization of Neoclassical Tearing Modes
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 The Neoclassical Tearing Mode (NTM) is a reconnecting magnetic perturbation driven unstable by the 

bootstrap current perturbation due to pressure flattening

 NTM evolution described by the generalized Rutherford equation

 ECCD can be used to locally replace the missing bootstrap current 

 Criteria employed to assess the stabilization efficiency of the ITER EC system:

• jCD/jbs > 1.2 (“large” WCD, assumes ECCD modulation) [Zohm 07]

• WCD jCD/jbs > 5 cm (“small” WCD< 5 cm) [Sauter 10]

 The analysis leads to an “optimum” EC profile width WCD=5/1.2=4.2 cm for ITER                                

and ca. 6 cm for DEMO
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Stabilization of Neoclassical Tearing Modes

 Reminder: the maximization of the total ECCD current leads to broad profiles (in general beyond 

optimum width for NTM stabilization)

 Lower N|| and lower frequency expected for optimum NTM control with respect to maximum ECCD 

case

max. ECCD NTM control
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Stabilization of Neoclassical Tearing Modes
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 Reminder: the maximization of the total ECCD current leads to broad profiles (in general beyond 

optimum width for NTM stabilization)

 Lower N|| and lower frequency expected for optimum NTM control with respect to maximum ECCD 

case

 For a frequency of 205 GHz, ca. 15 MW EC power required to satisfy stabilization criterion



 Present DEMO reference design allows focused beams and steerable mirrors (steering system 

below the breeding blanket, replacement of part of the launcher possible / expected)

 Alternative concept: Frequency-tuneable gyrotrons to modify deposition location [Wu 21]

 Sweeping strategy requires sufficient tuning speed (here 0.96 GHz/s with a bandwidth of 9.6 GHz; 

19 MW injected)
3 2

Alternative to beam steering
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[Wu 21]
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 Density fluctuations act as random variations of the refractive index → radiation scattering and beam 

broadening
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Beam broadening due to density fluctuations
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kinetic equation: WKBeam code [Weber 15] ← statistically 

averaged effect of fluctuations
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Pos. 1, 3, 4 Pos. 2

 Quantitative predictions through numerical solution of the wave 

kinetic equation: WKBeam code [Weber 15] ← statistically 

averaged effect of fluctuations

 Significant broadening and loss of stabilizing power 

expected for long propagation paths

 Conditions for minimizing the beam broadening not necessarily 

the same as for optimum current drive

 Example shown here: NTM stabilization with 27 MW from 

position 3 (not full optimization!)

 Large uncertainty on turbulence parameters (strength of the 

fluctuations, correlation length)

[Snicker 21]



 In the (unlikely) event of a significant amount of tungsten (0.01-0.1 g) crossing the separatrix, electrons 

should not cool down too quickly [Palermo 20] ← injection of EC waves foreseen

 Install more than 70 MW at 136 GHz with no other use?

 Different options presently explored: switch gyrotron harmonics (150 GHz O1 in the centre, 75 GHz X1 

at the edge) or keep frequency (150 GHz), change polarization (O1 in the centre, X2 at the edge) 
3 6

Control of radiative instability due to tungsten flake
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 In the (unlikely) event of a significant amount of tungsten (0.01-0.1 g) crossing the separatrix, electrons 

should not cool down too quickly [Palermo 20] ← injection of EC waves foreseen

 Install more than 70 MW at 136 GHz with no other use?

 Different options presently explored: switch gyrotron harmonics (150 GHz O1 in the centre, 75 GHz X1 

at the edge) or keep frequency (150 GHz), change polarization (O1 in the centre, X2 at the edge) 
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Control of radiative instability due to tungsten flake
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 Recent optimization exercise for a low-aspect ratio variant of DEMO: R0 = 7.5 m, a = 2.88 m (R/a=2.6), 

B0 = 4 T, Zeff = 1.5

 Standard optimization from (R,Z) = (11, 0) m consistent with usual picture, leads to max. 46 kA/MW

 10-12% O2-absorption slightly larger than for standard aspect ratio (slightly closer harmonics)
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Back to the roots: optimize the ECCD efficiency
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Alternative scheme for the outer core / edge: (slow-)X1 absorption

 X1-scheme from LFS: shift the resonance outside the plasma (LFS) by lowering the injection 

frequency, rely on Doppler shift → small operational window

 Quite high efficiency in the outer plasma, ρ ~ 0.8 – 0.9

 Preliminary studies show no particular advantage from top / HFS launch

 Promising theoretical results for STEP parameters [Figini EC21]

resonance moves 

outwards if the injection 

frequency is decreased



 Injection of electron cyclotron waves in a fusion reactor is very attractive from the physical and 

technological point of view

 Mature physics & technology: issues are mainly “complaining on a high level”

 Some applications (e.g. NTM stabilization) can be mastered likely only with ECCD

 Sustaining a steady state DEMO with ECCD only seems difficult according to present status of theory 

 Open technology issues: RAMI issues, extensions to higher frequencies / power / efficiency 

(technology readiness?)

 Theory relevant for ECCD applications: better understanding of expected turbulence and NTM (small 

island) physics

 Specific ECCD-related topics: Warm plasma effects on propagation, role of quasi-linear modification of 

the distribution function, performance of Okawa current, efficient estimate of beam scattering, brilliant 

ideas to improve efficiency?...
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Summary
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The European DEMO [Fus. Eng. Des., Special Issue, 2022]
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 Fundamental role of relativistic effects (Lorentz factor                               ) and Doppler shift

 Resonance curves in velocity space are ellipses intersecting the u|| axis at

 For low-field-side injection: resonance possible before                                                                        

cold resonance (Doppler shift) if

 Pinch point (first point in resonance) [Harvey 97]

 Increasing N|| moves the absorption location to the LFS and shifts the resonance on more 

energetic (less collisional) electrons → higher current drive efficiency, weaker absorption
4 2

The relativistic resonance condition
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Top view

tor. injection angle β=20°

ITER (NTM 

stabilization)



 The technological advantages of the EC system suggest the possibility of a purely EC-heated DEMO

 LH transition can be achieved with pure EC wave heating if impurity content are below a (density 

dependent) threshold

 Ion heat flux more sensitive (through Te-Ti) than PLH to the effect of impurities in the LH transition
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* An EC-only DEMO?

[Suarez 22]



 The present design point is a trade-offs between the most mature knowledge in physics and 

technology, the emphasis on the problem of the power exhaust and the attention given to nuclear 

design integration, and “not an a priori desire to be big” [Kembleton 22].

 Main factor setting the machine size: power exhaust and magnet performance
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* The European DEMO [Fus. Eng. Des., Special Issue, 2022]
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 Limit on power tolerated at reattachment 

(use simplified Eich scaling)

 Limit on concentration of divertor 

radiator (Reinke scaling)

 Fix A, Pfus, q95, fGW; use IPB98(y,2) and 

Martin scaling for PLH=Psep/fLH

[Siccinio 19]



 Two big advantages for theory: short (mm-range) wavelengths (geometric-optics or WKB limit 

[Bernstein 75]), linear theory works well in many cases [Harvey 89]) → allow very efficient calculations

 Waves absorbed around the cyclotron resonance or a harmonic of it

 Propagation calculated with cold-plasma model: Typical choices for polarization and frequencies: 

ordinary mode resonating at the electron cyclotron frequency (O1) and extraordinary mode at twice the 

cyclotron frequency (X2)

 X1 access from the low-field side problematic (cut-off on the way to the resonance)

 O1 typical scheme of choice in ITER and DEMO ← wave frequency well above cut-off conditions for 

high field, standard-aspect-ratio tokamaks
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* Electron Cyclotron Waves
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 Breakdown of linear theory [Harvey 89] when p [MW/m3] > 0.5 (n19 [m-3])² ← might be relevant for on-

axis deposition at high power > 50 MW

 Cold-plasma approximation valid if

• First condition requires the electron Larmor radius (0.01-0.1 mm) being much smaller than the wavelength (mm)

• Second condition might be violated if the wave approaches the cold resonance at finite Doppler shift (a scenario 

one wants to avoid for ECCD but cannot be excluded)
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* Electron Cyclotron Waves
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 What is the European DEMO actually? (basic considerations 

and different options, e.g. pulsed vs. steady state)

 DEMO vs. ITER: reactor prototype vs. physics experiment 

(also: where do we put the EC port? optimize functionality 

vs. design requirements)

 Theoretical background: resonance condition and ECCD 

efficiency 

 ECCD for bulk current drive → how to optimize the efficiency

 ECCD for stabilization of neoclassical tearing modes →

different requirements on frequency

 Recent developments (wave scattering, thermal instability, 

X1 at the edge, … ?)

 An EC-only DEMO?
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Outline

[Ciattaglia IEEE Conf. 17] 



 The present EU DEMO designs, and in particular the size which is being considered, is a result of a 

systematic exploration of the design space, the consequence of trade-offs between the most mature 

knowledge in physics and technology, the emphasis on the problem of the power exhaust and the 

attention given to nuclear design integration, and “not an a priori desire to be big” [Kembleton 22].

 Main factor setting the machine size: power exhaust and magnet performance

 Check papers Kembleton, Siccinio in FED (add figure?)

 Paper NF Mattia with radiation constraints (add figure?)
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The European DEMO [Fus. Eng. Des., Special Issue, 2022]
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 Fundamental question: How much current can be driven by EC waves? 

 Direct answer for a given scenario by scanning the parameter space (injection position, injection 

angles, wave frequency)

 First example [Poli 13]
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Optimizing the bulk current drive in DEMO
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Top launch, ω/2π=230 GHzEquatorial launch, pol. injection angle α=0



 Reminder: the maximization of the total ECCD current leads to broad profiles (in general beyond 

optimum width for NTM stabilization)

 Lower N|| and lower frequency expected for optimum NTM control with respect to maximum ECCD 

case

 Favourable settings beam focused on and tangent to the relevant flux surface at absorption location 

→ allow to increase the total current without overly widening the deposition profile

 More central q=3/2 and q=2 surface have in generally higher ECCD efficiency
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Stabilization of Neoclassical Tearing Modes
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 The module returns the estimated optimum current drive efficiency and driven current (per unit 

power) for given values of density, electron temperature, magnetic field, minor and major radius, ρ and 

Zeff

 The ECCD efficiency is calculated numerically [Lin-Liu 03; Marushchenko 08] ← requires wave 

frequency and parallel wave vector as an input

 Requires three conditions for the three quantities ω, N||, u||- (approximate                                               )

 width of absorption profile (only “tuning parameter”, justified from theory & simulations): ∆ρ=0.2

→ this fixes the energy of resonant electrons at absorption peak and hence u ||-:

 resonance condition

 pinch point definition 

(also fixed through the choice of ∆ρ)

 Combine last two expressions → frequency shift: 
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* HARE (Hare Analyses Reactor ECCD)
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 More detailed analysis supports simplified model

 Maximum-ECCD scenarios often exhibit ca.10% parasitic absorption (price to pay for large N ||)
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* HARE (Hare Analyses Reactor ECCD)
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[Poli 18]

pinch point



 More detailed analysis supports simplified model

 Maximum-ECCD scenarios often exhibit ca.10% parasitic absorption (price to pay for large N ||)

 Absorption might be still dominated by second harmonic even when first harmonic becomes accessible
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* HARE (Hare Analyses Reactor ECCD)
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 More detailed analysis supports simplified model

 Maximum-ECCD scenarios often exhibit ca.10% parasitic absorption (price to pay for large N ||)

 Absorption might be still dominated by second harmonic even when first harmonic becomes accessible

 Typical energy of resonant electrons at maximum ECCD ca. 4 times the temperature
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* HARE (Hare Analyses Reactor ECCD)
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[Poli 18]

max. absorption

pinch point



 The Neoclassical Tearing Mode (NTM) is a reconnecting magnetic perturbation driven unstable by the 

bootstrap current perturbation due to pressure flattening

 NTM evolution described by the generalized Rutherford equation

 ECCD can be used to locally replace the missing bootstrap current 

 Set left-hand side to zero, require that no solutions exist 

(caveat: the “CD stabilization efficiency” ηCD depends on W)

 Criteria employed to assess the stabilization efficiency of the ITER EC system:

• jCD/jbs > 1.2 (“large” WCD, assumes ECCD modulation) [Zohm 07]

• WCD jCD/jbs > 5 cm (“small” WCD) [Sauter 10]

 The analysis leads to an “optimum” EC profile width WCD=5/1.2=4.2 cm (ITER) 
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Stabilization of Neoclassical Tearing Modes
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 Injection from (R,Z) = (11, 0) m, scan in toroidal injection angle and frequency

 More extensive parameter scans performed by Chuanren Wu (injection from R=11,95 m): maximum 

ECCD 46 kA/MW for freq. = 153.5 GHz

 Harmonic overlap (O2 parasitic absorption) of the order of 10-12% at optimum injection conditions 

(slightly higher than in “standard” aspect ratio cases), becomes dominant for X2-X3
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Achievable current with EC waves in Low-aspect-ratio DEMO



 Potentially more current than O1 scheme for ρ > 0.7 (max. 16.5 kA/MW at ρ = 0.72)

 Quite high efficiency in the range ρ ~ 0.8 – 0.9

 No advantage found for top / HFS injection
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Alternative scheme for the outer core / edge: X1 absorption

Te x 1.1, ne x 0.9 Te x1.1, ne x 0.9
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* Alternative scheme for the outer core / edge: X1 absorption

B x 1.1 B x 1.1

 X1-scheme from LFS: shift the resonance outside the plasma (LFS) by lowering the injection 

frequency, rely on Doppler shift → small operational window

 Quite high efficiency in the outer plasma, ρ ~ 0.8 – 0.9

 Preliminary studies show no particular advantage from top / HFS launch

 Promising theoretical results for STEP parameters [Figini EC21]
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* Alternative scheme for the outer core / edge: X1 absorption

Te x 1.1, ne x 0.9 Te x1.1, ne x 0.9

 X1-scheme from LFS: shift the resonance outside the plasma (LFS) by lowering the injection 

frequency, rely on Doppler shift → with operational window

 Quite high efficiency in the outer plasma, ρ ~ 0.8 – 0.9

 Preliminary studies show no particular advantage from top / HFS launch

 Promising theoretical results for STEP parameters [Figini EC21]



Goal of this contribution

 Assess the current drive achievable with electron cyclotron 

waves in reduced-aspect-ratio DEMO

Main parameters

 R0 = 7.5 m, a = 2.88 m (R/a=2.6), B0 = 4 T, Zeff = 1.5

 Task: Evaluate maximum achievable electron cyclotron 

current drive (ECCD) for injection from the equatorial plane 

(conservative); assume max. 50 MW injected power

 Standard O1 scenario (ordinary mode at fundamental 

harmonic)

 Expected maximum efficiency for central ECCD: ca. 50 

kA/MW → ca. 2.5 MA in total (plasma current: Ip = 21 MA)
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Achievable current with EC waves in Low-aspect-ratio DEMO



 Waves absorbed around the cyclotron resonance or a (low-n) harmonic of it

 Typical choices for polarization and frequencies: ordinary mode resonating at the electron cyclotron 

frequency (O1) and extraordinary mode at twice the cyclotron frequency (X2)

 X1 access from the low-field side problematic (cut-off on the way to the resonance)

 O1 typical scheme of choice in ITER and DEMO ← wave frequency well above cut-off conditions for 

high field, standard-aspect-ratio tokamaks
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Electron Cyclotron Waves: Heating schemes
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[Westerhof 12]



 Fundamental extraordinary mode can have good absorption properties but the cyclotron resonance 

is usually not accessible from the low-field-side (cutoff before the resonance)

 For large enough toroidal injection angle, the Doppler shift makes the resonance accessible → with 

limited operational window

 Considered in the recent past e.g for KSTAR [Y-S. Bae], STEP [L. Figini]
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Alternative scheme for the outer core / edge: X1 absorption
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* The current drive efficiency η = j/p
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 Absorbed power density:

 Express power and current densities in terms of flows in velocity space:

 For a cyclotron resonance, 

 The current drive efficiency is independent of the number of resonant electrons [see e.g. Brambilla]

 Leads to the fundamental scaling                                (last step from assuming that the energy of the 

resonant electrons scales with the temperature)

 Evaluation of η is more complicated in the presence of relativistic effects and in toroidal geometry, but 

follows the same idea
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* Evaluation of the current drive efficiency

 Quantitative prediction of ECCD efficiency is based on the solution of the steady-state kinetic 

equation in the presence of collisions and heating [Stix 75, Karney 86]

 (Small) modification of the distribution function as a balance between heating and collisions
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[Prater 04]



* Evaluation of the current drive efficiency

 Quantitative prediction of ECCD efficiency is based on the solution of the steady-state kinetic 

equation in the presence of collisions and heating [Stix 75, Karney 86]

 (Small) modification of the distribution function as a balance between heating and collisions
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[Decker 03]



 In the optimization strategy shown before, the maximum achievable ECCD efficiency is determined by 

scanning the parameter space (several thousands of runs, each requiring ca 1 s)

 Pro’s: accurate evaluation; Con’s: Too time consuming for a repeated evaluation in a larger loop over 

tokamak parameters (optimization); not possible if equilibrium and profiles are not available (like in 

systems codes, 0D)

 Two main roads towards faster evaluation of ECCD: (i) simplify the calculation of the current drive 

efficiency; (ii) choose “representative point” in parameter space for single evaluation of ECCD efficiency
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Can we predict the maximum ECCD from global parameters?
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 In the optimization strategy shown before, the maximum achievable ECCD efficiency is determined by 

scanning the parameter space (several thousands of runs, each requiring ca 1 s)

 Pro’s: accurate evaluation; Con’s: Too time consuming for a repeated evaluation in a larger loop over 

tokamak parameters (optimization); not possible if equilibrium and profiles are not available (like in 

systems codes, 0D)

 Two main roads towards faster evaluation of ECCD: (i) simplify the calculation of the current drive 

efficiency; (ii) choose “representative point” in parameter space for single evaluation of ECCD efficiency

 Fundamental idea: the maximum ECCD is a trade-off between two competing effects

 Need for high-energy (low-collisionality) electrons → favours resonance on the tail of the 

distribution

 Need for sufficiently high absorption → favours resonance on the bulk

 Strategy implemented in the module HARE coupled to the PROCESS systems code → typical runtime 

0.1 ms [Poli 18]
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Can we predict the maximum ECCD from global parameters?
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