# Expanding the CIEMAT-QI family of quasi-isodynamic stellarators

G. Godino-Sedano<sup>1</sup>, J. L. Velasco<sup>1</sup>, and E. Sánchez<sup>1</sup>

<sup>1</sup>Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain

#### Main Goals

Published earlier this year, the 4 period CIEMAT-QI4 [Sánchez, NF 2023] is a quasi-isodynamic stellarator configuration, which first displayed simultaneously the following set of properties.





- Iota profile allowing for island divertor.
- Avoid low order rationals in the plasma.
- Ideal MHD stability.
- Low neoclassical energy transport.
- -Low fast ion losses:

Good at  $\beta = 1.5\%$ , excellent at  $\beta = 4.0\%$ .

- -Low bootstrap current.
- Reduced turbulence (via maximum-J).
- Several sets of filamentary coils that preserve these qualities.

This work aims to explore a similar configuration space for other periodicities and to explore the effects of aspect ratio and maximum elongation  $\kappa_{Max}$ , to this end we have made some further choices:

- -5 field periods (3 and 6 not in this poster),
- optimisation performed at  $\beta \sim 2.5\%$ .

# Targets and variables of the optimisation



 $-s = \psi/\psi_{LCFS}$ :

flux surface label,

-  $\alpha$ : field line label,

- Trapped particles (ions and  $e^-$ ) quickly bounce back and forth along field lines (due to  $\mu$  conservation, magnetic mirrors).
- There is a slower drift between the field lines, which is at constant  $J = \int_{l_1}^{l_2} m v_{||} dl$ .
- Radial drift that does not average to 0 can lead to radial transport and losses.
- Poloidal drift can compensate the former with a wider exploration of the flux surface.







### Omnigeneity

 $J = \int_{l_1}^{l_2} m v_{||} \, \mathrm{d}l$   $\overline{v_d \cdot \nabla s} \propto \partial_{\alpha} J = 0$ 

Quasi-isodynamicity

Omnigeneous with poloidally closed |B| contours.

 $-\overline{v_d\cdot\nabla\alpha}\propto\partial_s J<0,$  $\left| \frac{\overline{v_d \cdot \nabla s}}{\overline{v_d \cdot \nabla \alpha}} \right| \propto \left| \frac{\partial_{\alpha} J}{\partial_s J} \right| = 0$ 

Maximum-J

- Low neoclassical transport - Low FI losses

- Low bootstrap current allows - Reduced turbulence island divertor - Low FI losses

Effective ripple  $\epsilon_{eff}$ 



Sketch of exact QI field

 $\zeta_{Boozer}$ 

poloidal contour of minima Variance of |B| on poloidal contour of maxima No explicit bootstrap target yet

Variance of |B| on

 $\Gamma_C$  [Nemov PoP 2008]  $\Gamma_{\alpha}$  [Velasco NF 2021]



Sketch of exact max-J

### Conclusions

- Work on its way to replicate CIEMAT-QI4 for 5 other periodicities.
- Initial study into Pareto-efficiency and relations between quantities of interest.
- Neoclassical properties improved over CIEMAT-QI4.
- Next steps: coil design and improvements on 3 and 6 period configurations.

# Exploring the configuration space

We are considering all 5 period configurations that are MHD stable and satisfy the iota requirements, and choose to compare:

- aspect ratio,
- elongation  $\kappa_{Max}$ ,
- plasma beta  $\beta$ ,
- $\Gamma_C$  at and beyond half-radius,
- $-\epsilon_{eff}$  up to half-radius.











## Selected 5 period configuration





For s > 0.1, this configuration is Mercier-stable at  $\beta > 1.0\%$ . For all s, it is ballooning stable at  $\theta = 0$ ,  $\zeta = 0$ .









Energy loss from FI saturates at 0.8% at  $\beta = 4\%$ , and 2.3% at  $\beta = 2.5\%$ .











