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Abstract
—————————————————————————————————————————————————————————————
We applied the Physics-informed Neural Networks (PINNs) to the magnetohydrodynamic (MHD) simulations by building a Neural Network (NN) to find solutions for the MHD
equations. We chose the Brio-Wu shock tube problem as our test MHD sample. The inputs of the NN model are coordinates of space-time and the outputs of the model are the
magnetic field, the plasma bulk velocity, the plasma mass density, and the plasma thermal pressure. We combined the MHD equations and initial conditions into the loss function for a
physics constraint to the neural network model. We show our premilitary training results and discussion in the end.

Introduction
—————————————————————————————————————————————————————————————
Plasma is an ionized gas with positive and negative charge particles and the interactions between particles are complicated physics phenomena. One of the methods to study plasma is
Magnetohydrodynamic (MHD) simulation. The MHD simulation could describe plasma properties successfully. However, simulation usually costs amounts of computational power
and time. It also has a mesh problem for poor simulation results. With the advances in technology, neural networks can estimate complicated data. One of the popular neural networks
was called physics-informed neural networks (PINNs) and was introduced by Raissi et al. (2019) for solving partial differential equation (PDE). The method includes equations to
loss item for constraining the outputs of the neural network to approximate the solutions of the equations. Compared to traditional simulation methods, PINNs have the benefits of
meshfree and are flexible to be applied to different problems. Wang et al. (2021) proposed a PINN for solving flow problems. Recently, Bard and Dorelli (2021) used PINNs to
reconstruct the plasma properties in several shock problems successfully. In this work, we focus on the 1D Brio-Wu shock tube problem to investigate how to implement PINNs in
plasma and if it works or not. We build a multi-layer neural network as an approximation of the solution to MHD equations by Pytorch.

Neural Network 
—————————————————————————————————————————————————————————————
We derived the one-dimension (1D) MHD equations from Tsai et al. (2015) and showed the equations below:
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We rearranged the equations into the forms of the outputs of  the neural network with respect to the inputs  and showed the equations below:
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The initial condition is shown in the following:

(𝐵%! , 𝐵&! , 𝐵'! , 𝑉%! , 𝑉&! , 𝑉'! , 𝜌(, 𝑝() = 0.75, +1, 0, 0, 0, 0, 1, 1 for x < 0
(𝐵%" , 𝐵&" , 𝐵'" , 𝑉%" , 𝑉&" , 𝑉'" , 𝜌), 𝑝)) = 0.75, −1, 0, 0, 0, 0, 0.125, 0.1 for x > 0

The initial condition was connected by a hyperbolic tangent transition shown below:
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A represents Bx, By, Bz, Vx, Vy, Vz, p, 𝜌 and W = 0.0085. We included the equations shown above and the initial condition in the loss function. The total loss is Loss = Lossequations +
Lossinitial condition. We built a neural network with 6 layers which have an input layer, an output layer, and several hidden layers, and the structure of the model is shown in Table 1. The
input of the model is space-time coordinate (x, t) and the output is Bx, By, Bz, 𝜌, Vx, Vy, Vz, p. The x ranges from -1 to 1 and t ranges from 0 to 1. The data points are 10000 and the
learning rate = 0.0001. We used a stochastic gradient descent (SGD) optimizer with 500 epochs in our training.

Results and Discussion
—————————————————————————————————————————————————————————————
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Layer Input Output Activation function
1 2 8 Tanh
2 8 64 Tanh
3 64 256 Tanh
4 256 256 Tanh
5 256 64 Tanh
6 64 8

Table 1. Model structure

A loss value is the difference between expected value and model
output. The loss values with epochs are called a learning curve to
evaluate whether a model learns well during its training. We showed
our learning curve in Figure 1. and found our loss value decreases
with epochs. This indicates the outputs from the trained model are
near the expected value. We further checked equation and initial
condition loss and showed the results in Figure 2. We found the
equation loss decreases before the 100th epoch and increases after the
100th epoch. This indicates that the model output is deviated from the
expected value and the model is overfitting. We also checked the
individual loss inside the equation loss and found only the f0
(∂Bx/∂x=0) loss shows a steady decrease with epochs.

Figure 2. Individual loss term versus epoch. Left: equation loss. Right: initial condition loss.

These results show most terms in equation loss contribute to increasing loss with epochs. We checked the initial
condition loss and its individual loss terms. We found the initial condition loss and its individual losses decrease with
epochs. These results indicate that the model fits well with the initial condition loss terms. The possible reason for
different behaviors in the equation and initial condition loss might be related to different scale values. We noticed
that the values of equation loss and initial condition loss differ by one order of magnitude at the beginning epoch.
This suggests that the two losses have different contributions to total loss during training and that leads to different
magnitudes of the backpropagation gradient (Wang et al. 2021). Recently works of literature claim that the
imbalance loss problem can be solved either by the learning rate annealing or the relative loss balancing with random
lookback (Wang et al. 2021; Bischof & Kraus 2021). We showed the trained model output at t = 0.2 in Figure 3. and
the results do not perfectly match the analysis results (Tsai et al. 2015) due to the poor training results.

Figure 1. Total loss versus epochs 

Figure 3. Trained model prediction for Bx, By, Bz, 𝜌, Vx, Vy, Vz, p at  t = 0.2.
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