Impact of 3D velocity boundary conditions consistent with Ohm's law on the stability of free-boundary modes

Flow3D

P.\

0.03

0.02

0.01

0.00

 10^{4}

External kink 2,1 - flat current

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

q(a)

3D Flow

 $S = M = 10^7$,

g 0.8 q(a) = 1.5

effective

S = M

ideal MHD

in the core/

• 3D Flow (S = $M = 10^7$)

 $(S = M = 10^6, a = 0.88r_{BC})$

 $(S = M = 10^7, a = 0.88r_{BC})$

• 1D Flow + P.V.

• 1D Flow + P.V.

in the P.V.

3D Flow

• 1D Flow + P.V.

variation

across

1D Flow + P.V.

 $S = M = 10^6$

 $a = 0.88 * r_{BC}$

0.0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1.0

Scan on ideal wall proximity - Flat current model, q(0) = 1.1

— Theory

Luca Spinicci^{1,2}, Daniele Bonfiglio^{1,3}, Susanna Cappello^{1,3}, Marco Veranda^{1,3}

- ¹Consorzio RFX, Euratom-ENEA Association, Padova, Italy
- ²University of Padova, Padova, Italy
- ³ISTP-CRN, Milano-Padova-Bari, Italy Luca.Spinicci@igi.cnr.it

General context:

Resistive wall modules [1] allow realistic magnetic boundary formulation in most nonlinear MHD codes.

However, the fluid boundary is usually simplified: $\vec{v} \cdot \hat{n} = 0$, or possibly, $\vec{\boldsymbol{v}}\cdot\widehat{\boldsymbol{n}}=v^{0,0}$.

Such an assuption is both unphysical and inconsistent with the magnetic boundary.

A 3D velocity boundary was identified as crucial for modelling Vertical Displacement Events (VDEs) [2] and have been recently included in the DEBS [3], NIMROD [4] and JOREK [5] codes for better modelling of the scrape-off layer in simulations of VDEs.

Despite this, all nonlinear MHD studies on free-boundary modes leverage a high-resistivity low-density «pseudo-vacuum» region around the hot and denser plasma core, enforcing boundary conditions at some analytical boundary.

Specific premises:

Resistive-wall boundary conditions, with fluid boundary consistent with Ohm's law, have been recently implemented in SPECYL [1,6] and PIXIE3D [1,7].

A very thorough nonlinear verification benchmark has been performed between the two codes [1].

A fully consistent boundary must be capable of reproducing a

W.r.t. the pseudo-vacuum approach:

- 1) More robust convergence (asymptotic!!) to analytical models
- 3) No waste of computational time in modelling vacuum

plasma surface deformation must be negligible for

1. The SpeCyl code

and the velocity v, according to a visco-resistive scheme:

$$\rho \partial_t \boldsymbol{v} + \rho \boldsymbol{v} \cdot \nabla \boldsymbol{v} = \boldsymbol{J} \times \boldsymbol{B} - \rho \boldsymbol{v} \nabla^2 \boldsymbol{v}$$
$$\partial_t \boldsymbol{B} = -\nabla \times (\eta \, \boldsymbol{J} - \boldsymbol{v} \times \boldsymbol{B})$$
$$\boldsymbol{I} = \nabla \times \boldsymbol{B} \qquad \nabla \cdot \boldsymbol{B} = 0$$

Main assumptions:

- 1. Cylindrical geometry

The new and more realistic boundary will be crucial for proper modelling of reversed-field pinch helical states [6,8].

This poster, a proof of principle:

free plasma-vacuum interface in the «transparent-wall» limit, by setting:

$$\begin{bmatrix} analytical\ domain & \equiv \ plasma\ boundary \end{bmatrix}$$

- Wider applicability to several initial equilibria

Limitation: the dynamics \implies we study linear perturbations

The **SpeCyl** code [1,6] advances in time t the magnetic field \boldsymbol{B}

$$\begin{aligned}
\rho o_t \boldsymbol{v} + \rho \boldsymbol{v} \cdot \boldsymbol{v} &= \boldsymbol{J} \times \boldsymbol{B} - \rho \boldsymbol{v} \, \nabla^2 \boldsymbol{v} \\
\partial_t \boldsymbol{B} &= -\nabla \times (\eta \, \boldsymbol{J} - \boldsymbol{v} \times \boldsymbol{B}) \\
\boldsymbol{J} &= \nabla \times \boldsymbol{B} \qquad \nabla \cdot \boldsymbol{B} = 0
\end{aligned}$$

- 2. Negligible pressure gradients ($\beta \rightarrow 0$)
- 3. Time-const. density $\rho(r)$, resistivity $\eta(r)$ and viscosity $\nu \nsim r$

2. External kink mode in the straight tokamak [9]

 $R \gg a$ (cylindrical approx.) straight tokamak \equiv ⇒ no pressure driven dynamics

ideal MHD $\eta, \nu \to 0$ inside the plasma

external kink mode (m,n)=(2,1)

Bibliography

- ✓ External mode ($v_{\text{edge}} \cdot \hat{n} \neq 0$) ✓ Needs vacuum outside the
- ✓ Linear perturbation m=2 on top of axisymm. equilibrium:

plasma to get unstable

 $\propto e^{i2\theta - \frac{iz}{R} - i\omega t}; \quad \mathcal{R}e(-i\omega) = \gamma$

L. E. Zakharov *et al.*, PoP, **22**, 062511 (2015). doi: 10.1063/1.4922896

L. Spinicci *et al.*, AIP Advances, **13**, 095111 (2023). doi: <u>10.1063/5.0161029</u>

- H. R. Strauss, PoP, **21**, 032506 (2014). doi: <u>10.1063/1.4868436</u>
- K. J. Bunkers et al., PoP, 27, 112505 (2020). doi: 10.1063/5.0023604
- [5] F. J. Artola *et al.*, PPCF, **63**, 064004 (2021). doi: 10.1088/1361-6587/abf620
- [6] S. Cappello *et al.*, PPCF, **46**, B313 (2004). doi: 10.1088/0741-3335/46/12B/027
- [7] L. Chacón, Computer Phys. Commun. 163, 143-171 (2004). doi: 10.1016/j.cpc.2004.08.005

("crossing" point) within a 15-20% tolerance.

Theory

3D Flow

Two initial axisymmetric Ohmic equilibria ($J_z \propto \eta^{-1}$): 1) Flat-current model [9]:

2) Wesson's model [10]:

Robust convergence Flow3D: asymptotic convergence to

 $\gamma_{
m theory}$ Flow1D+P.V "crosses" $\gamma_{\rm theory}$ and is 1D Flow + P.V.asymptotically stable Stability $(\gamma \le 0)$

Wide range of initial equilibria Flow3D: sticks to theoretical expectations

Flow1D+P.V. can only deal with a flat current. ("crossing" point) Finite $\partial_r \eta$ inside the plasma completely spoils the stability boundaries in the Wesson's Flow1D+P.V. (more conductive) equilibrium case study.

P.V. is not a reliable vacuum

Flow3D: sticks to theoretical profiles (----) (little disturbed by larger $\eta_{
m edge}$ in Wesson's case study).

Flow1D+P.V. competition between ("crossing" point) ideality in the core and effective vacuum behaviour of the P.V. In the Wesson's case there is evidence of a spike in $J^{2,1}$ at resonance radius (inside P.V.!!!)

 $r_{q=2} \approx 1.05 a$

IN CONCLUSION:

P.V. is unavoidable when the boundary conditions are not fully self-consistent

Our fully consistent boundary conditions can reproduce a free boundary when $\tau_w \ll \tau_{\rm dyn}$

Also, convergence is more robust and general Thorough modelling of vacuum: as we know, the first time with a nonlinear MHD code!

- [8] L. Marrelli *et al.*, NF, **61**, 023001 (2021). doi: 10.1088/1741-4326/abc06c
- J. P. Freidberg: *Ideal MHD*, chaps. 8 & 11, Cambridge Univ. Press (2014)
- [10] J. A. Wesson, NF, **18**(1), 87 (1978). doi: <u>0029-5515/18/1/010</u>