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Resistive-wall boundary conditions, with fluid boundary 
consistent with Ohm’s law, have been recently implemented in 
SPECYL [1,6] and PIXIE3D [1,7].  

A very thorough nonlinear verification benchmark has been 
performed between the two codes [1].

Specific premises:

Resistive wall modules [1] allow realistic magnetic boundary 
formulation in most nonlinear MHD codes.

However, the fluid boundary is usually simplified: 𝒗 ⋅ ෝ𝒏 = 0, or 
possibly,  𝒗 ⋅ ෝ𝒏 = 𝑣0,0.
Such an assuption is both unphysical and inconsistent with the 
magnetic boundary.

A 3D velocity boundary was identified as crucial for modelling 
Vertical Displacement Events (VDEs) [2] and have been recently 
included in the DEBS [3], NIMROD [4] and JOREK [5] codes for 
better modelling of the scrape-off layer in simulations of VDEs.

Despite this, all nonlinear MHD studies on free-boundary modes 
leverage a high-resistivity low-density «pseudo-vacuum» region 
around the hot and denser plasma core, enforcing boundary 
conditions at some analytical boundary.

General context:

A fully consistent boundary must be capable of reproducing a
free plasma-vacuum interface in the «transparent-wall» limit, by 
setting:

This poster, a proof of principle:

𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑑𝑜𝑚𝑎𝑖𝑛 ≡  𝑝𝑙𝑎𝑠𝑚𝑎 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

W.r.t. the pseudo-vacuum approach:
1) More robust convergence (asymptotic!!) to analytical models
2) Wider applicability to several initial equilibria
3) No waste of computational time in modelling vacuum

Limitation: plasma surface deformation must be negligible for 
the dynamics    ⟹    we study linear perturbations

3. Resistive wall boundary with 3D flow consistent with Ohm’s law
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Thin-shell relations [1] yield:

𝑬𝑡,𝑎 𝑩𝑎, 𝒗𝑎 ≡
𝜂

𝜇0
 𝛁 × 𝑩𝑎 − 𝒗𝑎 × 𝑩𝑎

Enforcing Ohm’s law:

Resistive wall time scale 𝜏𝑤 (input param.)

𝑽⊥,𝑎
𝑚,𝑛 ≠ 0

𝒗𝑎 = 𝒗⊥,𝑎 =
𝑬𝑡,𝑎 × 𝑩𝑎

𝐵2
;

The plasma can impinge on / suck particles from the wall
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Fluid boundary, 
derived from the 

Ohm’s law

Fluid BCs could easily adapt to accomodate also finite 𝑣∥,𝑎 

1. The SpeCyl code

The SpeCyl code [1,6] advances in time 𝑡 the magnetic field 𝑩 
and the velocity 𝒗, according to a visco-resistive scheme:

Main assumptions:
1. Cylindrical geometry
2. Negligible pressure gradients (𝛽 → 0)
3. Time-const. density 𝜌(𝑟), resistivity 𝜂(𝑟) and viscosity 𝜈 ≁ 𝑟 

𝜌𝜕𝑡𝒗 + 𝜌𝒗 ⋅ 𝛁𝒗 = 𝑱 × 𝑩 − 𝜌𝜈 ∇2𝒗

𝜕𝑡𝑩 = −𝛁 × 𝜂 𝑱 − 𝒗 × 𝑩

𝑱 = 𝛁 × 𝑩 𝛁 ⋅ 𝑩 = 0

2. External kink mode in the straight tokamak [9]

straight tokamak ≡  𝑅 ≫ 𝑎 (cylindrical approx. )

⇒ no pressure driven dynamics

ideal MHD ≡  𝜂, 𝜈 → 0 inside the plasma 

✓ Linear perturbation 𝑚 = 2 on 
top of axisymm. equilibrium:

∝ 𝑒𝑖2𝜃−
𝑖𝑧

𝑅
−𝑖𝜔𝑡;  ℛℯ −𝑖𝜔 = 𝛾  

✓ External mode (𝒗edge ⋅ ෝ𝒏 ≠ 0)

✓ Needs vacuum outside the 
plasma to get unstable

𝜏𝑤 ≪ 𝜏dyn.   → transparent-wall

𝜏𝑤 ≥ 𝜏dyn.   → resistive wall  

𝜏𝑤 ≫ 𝜏sim.   → ideal wall   

𝜏dyn. = dynamic time-scale;      𝜏sim.= simulation length

𝒗∥,𝑎 = 0

4. Comparative study: external kink mode 2,1 with two alternative velocity boundaries 

external kink mode ≡ 
𝑚, 𝑛 = (2,1) 

‘‘crosses’’ 𝛾theory and is 

asymptotically stable 

asymptotic convergence to 
𝛾theory

Robust convergence
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(‘‘crossing’’ point)

&
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(more conductive)

Flow3D:

Wide range of initial equilibria

sticks to theoretical expectations

Flow1D+P.V

Flow3D:

can only deal with a flat current. 
Finite 𝜕𝑟𝜂 inside the plasma 
completely spoils the stability 
boundaries in the Wesson’s 
equilibrium case study.

Flow1D+P.V.
(‘‘crossing’’ point)

Flow3D:

P.V. is not a reliable vacuum 

sticks to theoretical profiles (----)
(little disturbed by larger 𝜂edge in 

Wesson’s case study).

competition between MHD 
ideality in the core and effective 
vacuum behaviour of the P.V.

In the Wesson’s case there is 
evidence of a spike in 𝑱2,1  at 
resonance radius (inside P.V.!!!)

𝑟q=2 ≈ 1,05 𝑎

Flow1D+P.V.
(‘‘crossing’’ point)

Flow3D:

Stabilising effect of an ideal wall

sticks to theoretical expectations, 
within a 1% tolerance.  

Sticks to theoretical expectations, 
within a 15-20% tolerance.

Only for the flat-current model:

IN CONCLUSION:

P.V. is unavoidable when the boundary 
conditions are not fully self-consistent 

Our fully consistent boundary conditions can 
reproduce a free boundary when 𝜏𝑤 ≪ 𝜏dyn.

Also, convergence is more robust and general

Two alternative fluid boundaries are compared:

Two initial axisymmetric Ohmic equilibria ( 𝐽𝑧 ∝ 𝜂−1):

1) Flat-current model [9]:

2) Wesson’s model [10]:

𝐽𝑧 𝑟 = ቊ
𝐽𝑧 0 , if 𝑟 ≤ 𝑎
0, if 𝑟 > 𝑎

𝐽𝑧 𝑟 = ቊ
𝐽𝑧 0 1 − 𝑟/𝑎 2 , if 𝑟 ≤ 𝑎
0, if 𝑟 > 𝑎

Pseudo vacuum (P.V.)
best possible, numerically stable 

⟹  ൝
𝜌 𝑟 > 𝑎 ≈ 10−4 𝜌 0

𝜂 𝑟 > 𝑎 ≈ 500 𝜂 0  
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Thorough modelling of vacuum: as we know, 
the first time with a nonlinear MHD code!

𝜏𝑤 ≪ 𝜏dyn.

𝜂 ↓, 𝜈 ↓

→

Scan for a GIF

The new and more realistic boundary will be crucial for proper 
modelling of reversed-field pinch helical states [6,8].
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