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abstract: NIQ1 (Negative lon Optimization phase 1) is a compact multiaperture radiofrequency H- ion source whose design was optimized
for sustainable prolonged beam on target (BOT) operation; installation economy implied a drastic scaling as respect to fusion device D-
sources. The latter, in a consistent view for energy production request a beam on tokamak (BOT) span of 20 years, that is 6 10% s. Even
if Cesium improves H- production as well known, also Cs-free regimes (and intermediate regimes) well deserve some development
effort, in view of avoiding long term contamination of the accelerator and for use as cleaning procedure. Data collected by NIO1 in a
true Cs-free regime (before 2020) are thus very important, and need a through statistical analysis, with special attention to the
technique of gas conditioning that was discovered in NIO1 and to the issues concerned with long term operation. Gas conditioning
macroscopically proves the importance of surface effects, even when the final production of H- happens in the source volume. As
regards to the Electron Cyclotron Resonance Ion Sources (ECRIS), exchange of ideas and concepts, such as ‘electron starvation’ and
biased disks, liners and wall coatings, is discussed. H- ion sources differ in terms of surface to volume ratio (over 10> m! in matrix ion
sources), practically achievable BOT (from 10* s to 10° s per year) and working frequency (from GHz in the ECRIS case down to 1
MHz) is reviewed. Gas mixing, conditioning and surface material perspectives are envisioned.

I. INTRODUCTION

Negative ions (eg. H’) production and
extraction include much more complex
systems ([12]) than positive ions do. Fusion
applications add the major challenges: large
current feasible only with multiaperture
source; 2) CW operation time longer than
hours; source life beam on target time BOT

=6 103s (20 years)

I11. SET-UP and development

NIOI1 has a modular setup, and achieved H-
beam runs longer than 104s, trying to open
worldwide a new window in fusion researches
on source transient and stability effect.
Achieved BOT < 10 s/year limited by support.

II1. Systematic experiments

NIO1 support gas was O, or air and then H,
(2015). In 2017 we see undesired transients.
To suppress them, at last we try gas
conditioning: one day O,, then H, again for
a week, repeating. Gas conditioning with O,
was very successful[13]; here we add results
with selected other gases, as N, (suggested

for comparison to air), Ar (used in many rf
milar to Cs). For busy
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Figure 1:
NIO1 plasma chamber
and grids (see labels),
with a cut parallel to
plane xz; 'p1' marks the
gauge flange, and 'Cs'
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Charge exchange on cesiated wall:
H (fast) + Cs + e (wall) - H- + Cs + wall

In Cs-based regimes, wall importance is obvious. In
NIO1 true Cs-free regimes were studied until 2019;
still we find wall effects, mainly gas conditioning.

Some symbols: p, source pressure; p, vessel pressure,
P\ forward rf power, I, current in plasma grid PG
electrode , j, H current density, j, ¢ current density

As a first remedies to get —° |
back to good current we
develop: 1) improved rf
window air cooling; 2) 0
change of p,. So we

observed anti-correlation

1.6

Fig 4: Anti-correlation of I ;. and V ,, during transients, for
several fixed conditions:(a) at fixed control parameter as P,=1.2
kW, I,,~0 , p;=0.75 Pa, beam voltage V =4 KV, extraction voltage
V =0.5 kV, compare [5]; (b): P,=1.3 KW, p.=0.9 Pa, filter current
I,,=400 A with configuration 'f3' [13]; V=4 kV and V=0.45 kV
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All tested gas conditionings show some improvement
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I111.d Beams (see also poster P30)
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Figure 8. Projections of the H- beamlet matrix as seen from two
lateral cameras; one example after Nitrogen conditioning 'aN2', with
V=5.4 kV (limiting I, to 2.5 mA), V/V,=10, p=0.9 Pa, and
I,,=400 A;labels show camera name and dataset index dsn.
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As Figure 8, but with I,=4.1 mA, requiring V,=0.75 kV and V_=8.1
kV for reasonable optics; an example after Xenon conditioning 'aXe'
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V. Conclusion and perspectives

The H™ production can be improved in Cs-free regime, in a
repeated way, with a gas conditioning technique, which also
cancels the undesired transient fluctuation noted in previous
works. Some fluid model is well in progress [see talk ID 7 this
conf.]; analogies with gas mixing and other effects in ECRIS|7,
19, 20] are noteworthy. In perspective, gas conditioning with Ar
or Xe can be helpful in Cs-based regimes, or after Cs-based
operation, both for cleaning|[11] and for lowering the extraction
plasma temperature T, ; and it may be a valuable integrative
method for H— ion sources.
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I, vs V ,canti-correlationis an outstanding feature
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(explained in talk 7).

surfac

Efﬁcacy of gas conditioning is a robust proof that
egimes

effect matters also in Cs- free
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