UNIVERSITÀ **EURO***fusion* DEGLI STUDI **CONSORZIO RFX** DI PADOVA

Study and development of diagnostic systems to characterise the extraction region in SPIDER

Beatrice Segalini^{1,2}, Valeria Candeloro^{1,2}, Luca Franchin¹, Roberto Pasqualotto¹, Carlo Poggi¹, Gianluigi Serianni^{1,3}, Lauro Trevisan¹, Marco Tollin¹ and Emanuele Sartori^{1,2}

¹Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4 – 35127 Padova, Italy ²Università degli Studi di Padova, Italy ³ISTP-CNR, Institute for Plasma Science and Technology, corso Stati Uniti 4 – 35127 Padova, Italy

Corresponding author email: beatrie.segalini@igi.cnr.it

SPIDER

PRIMA Test facility for ITER¹ in Padova houses SPIDER² and MITICA³

- → Beam formation and acceleration studied in the full-scale ion source SPIDER (Source for Production of Jons of Deuterium Extracted from an Rf plasma).
- Operations started in 2018
- ➔ In 2021 it firstly operated with caesium seeding.
- ightarrow Now: major shutdown ightarrow general upgr

Beam energy	100 keV
Extracted current density	355 (H) – 258 (D) A/m
Maximum Beam Source pressure	0.3 Pa
Beam uniformity	>90%
Beamlet divergence	≤7 mrad
Beam on time	3600 s
Co-extracted e ⁻ /D ⁻	<1

POSITIVE IONS DISTRIBUTION - simulations

Code uses null-collision method and follows positive ions, taking into account of: Magnetic filter field conditions

NEGATIVE ION EXTRACTION IN SPIDER

- In beam sources for neutral beam injectors, when high beam energies are needed, negative hydrogen ions (NI) are extracted from a caesiated plasma discharge.
- H- ions are generated from volume and surface processes.
- The surface production is
- enhanced by Cs deposition on the source walls and in particular on the plasma electrode of the accelerator, made of molybdenum and kept at high temperature to maximize the caesium effect.
- The plasma properties in the region of extraction, the mechanisms o negative ion production and extraction in the magnetic field, and the formation of the single beamlets and their optics should be investigated, focusing especially on beam divergence and uniformity.

dI/dV

In SPIDER, several diagnostic aimed at this tasks are already installed, but more vertical resolution could help in providing a deeper understanding of the physics of beam formation \rightarrow dis-uniformity experimentally detected not on different beamlet groups \rightarrow could it be also within a single one?

Vertical profile of the number density of positive ions (top) and electrons (bottom) at BP estimated by combined oplication of the collisional-radiative model for Cs to OES data, Langmuir probes, and laser absorption spectroscop Caltron-shaped points are collected via a triple Langmui robe on the source back. Figure taken from G. Serianni et al., Rev. Sci. Instrum, 93, 081101 (2022);

CONCLUSIONS

- It will intersect a laser \rightarrow electron photodetachment
- negative ion beam sources:
- Design supported by 3D Monte Carlo simulations;

- Retarding Field Energy Analyser (RFEA) probes can provide a direct estimation of (positive) ion energy distribution (precursors of negative ions in surface processes) \rightarrow
- A movable Langmuir probe can provide a vertical scan of main plasma parametersing the extraction area \rightarrow

MOVABLE LANGMUIR PROBE

- Movable: characterize uniformity vertically in a full beamlet group
- Close to beam extraction, with Cs on surface
- Laser intercepts probe → electron photodetachment⁴
- Measurements of T(H-) and n-
- Vertical scan of plasma parameters in extraction region
- Local measure of T(H-), n- via electron photodetachment

ttps://doi.org/10.1063/5.0084797

The RFEA sensor will be hosted on a TZM support

Fixed on the BP \rightarrow can be useful for adding other sensors

RFEA Floating potential SENSOR Langmuir flat probe At least 2 thermocouples, to keep probe

PD

→ Feasibility

depending on cable

management,

evaluated during

assembly phase

will be

positioning

Fragility

ional design, from H J Yeom et al 2020

Two new diagnostic systems will be installed on SPIDER during the long shutdown; One is a **movable Langmuir probe** \rightarrow vertical scan @extraction of main plasma parameter; Second is a RFEA → measure positive ion energy distribution to investigate the mechanism of extraction in

Future work: installation and testing, simulation analysis, design finalisation for VICTOR, experimental campaign.