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Abstract: The compact radiofrequency negative ion source NIO1 (Negative Ion Optimization phase 1) has many available CF40 ports
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(mostly directed in x direction where z is beam extraction direction) and the electron deflection filter B¢ (due to magnets inserted in
the extraction grid EG and the post-acceleration grid PA) mostly directed in the y direction. Their effect can be separated by
cameras looking from different directions, namely CAM1 (looking from —x axis) is sensitive to B’ while CAM?2 (looking from —y axis)
verifies B¢ effect; both cameras are also sensitive to beam optics, dependent on extracted beamlet currents, their uniformity and
applied voltage. Optional algorithms for noise rejection and pre-smoothing can improve automatic recognizing of beamlet peaks,
while a good fraction of images can be simply fitted by Gaussian shapes. This analysis allows to estimate beamlet displacement and
deflection. Typical shapes of extracted beamlets are listed, noting in CAM2 the effect of de sign reversal (due to EG magnets) and of
the compensation techniques used to obtain beamlet parallelism (in good matching); systematic analysis of correlation between
images, other source measurements and simple beam simulation is also attempted. Alignment and scaling of images is discussed also
with reference to background objects. Moreover, beamlet convergence was sometimes observed, and corresponding datasets were
tagged for optics correction. Finally beam size information useful for Faraday cup design is obtained.

III MODEL FOR FITS

Since x,y ion positions are near z-axis, in 1st approximation we
can use a simple light collection model for CAM1 and CAM2

IV. RESULTS

To perform secondary fit eq. (3.4) we of
course need that all slice profiles can be
fitted: here an example:

I. INTRODUCTION and SETUP

An ideal tool to optimize the extraction for a
H- ion source would allow to map the beam

current density. An approximation to these
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IV.b Result the secondary fits

From secondary fits the rms beam divergence d,
can be calculated for each beamlet group; as well
as the beam deflection 3. A nice graphics of them
is the border reconstruction

II1.c Secondary fits

We expect that b; (the fitted barycenter of the i-th beamlet group) depends linearly on zx
So we can consider a linear fit of the z-dependence of the
results of the eq. (3.3) fit

bi(zi)=a; + Biz , oilzx) =vi +dizie BA4)

the fit parameters are a;, f3;, y; and the rms divergence d;

NIO1 (Negative Ion Optimization phase 1) is a H- ion
source, producing 9 beamlets. The camera CAMI1 and
CAM2 must be placed so to avoid: direct view of the
plasma; view of brighter reflections. Data can
improved by: selecting adequate camera gains; consi-
dering as 'data region' only the image portions free
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IL.b Typical total currents

In 2019 (Cs-free regime), where most of this poster analysis originates, current
was estimated to reach 8-11 mA; with Cs results more than doubled at similar
conditions. Here we limited to cases with lower current and better optics, for
example the 2019 results have 4 mA current; for some 2022 results see below

Fitting can be fully automated when the slice profile
satisfies a quality check, passed when a search
routines find 3 peaks (CAM2 profiles may often give
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Figure 1. Overall 3D cut view, showing part of NIO1 accelerating electrodes; note CAM1, CAM2 and

CAMS3 placement; CFC tile recently moved after CAM3 position
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Figure 2. 3D geometry of camera setup: (a) section, with z the beam axis; note CAM1 larger tilting (b)

overall view, note CAM2 looks to the pump

I1V.d 2022 RESULTS

After the Cs-free result, commission of Cs-oven operation of NIO1 proved very
difficult and long (due to pandemic), with some over-cesiation problems. A new
pump system allows to operate with larger source pressure p, and much smaller
vessel pressure p,. CAM1 and CAM2 diagnostics worked smoothly as before,
allowing significant comparison and experience. Further calibration are well in
progress
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As noted before, when profile peaks correspondingly to beamlet groups
are neatly separated (at least in the fit), we approximately consider the
peak integrated luminosity I'; as proportional to the i-th beamlet

group (b. group in brief) current. Figure above show ratios of I'; vs
voltage V., in condition as before; note large variations in CAM2.
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The b. group divergences div,=1.4 d, for the same case as before
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The b. group divergences, now as a function of R =V /V, . This is most important,
for beam optics. Note the typical smile shape, near the minimum at R, =10

V. CONCLUSION
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Figure 8. Reconstruction of beamlet borders: (a) CAM1 view (b)
CAM2 view; note that extrapolations of beamlet borders 1 and 2 do

intersect in front of the pump, as also directly evident from image

The data of NIO1 CAM1 and CAM2 allows to test several fit formula,
that were implemented with some attention to practically avoid both
over-constrained fit and ill-conditioned fits. While the measurement of
current may have perspective of advantages with ’3g’ fit or ’refit’, the
border reconstruction clearly show the usefulness of the ’4g+1p’ fit,
perhaps as an additional tools. Beamlet displacement and deviation
can be better observed from the border reconstruction, typically based
on ’4g+1p’ fit. In some case, exploration of border reconstruction
’predicts’ beamlet groups crossing, directly observed on some CAM?2
images. This is consistent with some theoretical approach[5], even

if more analysis is surely worthwhile. The crossing of beamlet groups
is yet not observed on CAM1, while the data from the new CAM3
being commissioned may allow much more precise observation, at
least of deflection in zy plane.
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