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Negative ion meniscus

Negative lon Source Plasma
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Beam divergence is an argent issue

The beam divergence requirement for ITER is 7mrad

- RF source ~ 12 mrad >7 mrad
- Arc source =4 — 7 mrad

But, no significant difference (1.0-1.4 deg.) appears in the case
of Positive IS

The explanation of the different divergence
between RF- and Arc-sources are required

Our group (NIFS) collaborates with 10 and IPP to
investigate beam focusing with hybrid source

Direct comparison of beam focusing properties
between RF- and Arc-sources with the same
accelerator and the same diagnostics is coming
soon, then

=> Understanding of the meniscus physics
becomes more important




Two Approaches to the meniscus physics

Goal of this study is
“‘experimental characterization of negative ion meniscus”
with beam measurement and dedicated analyses

Plasma Grid
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In y direction,

the single Gaussian beam was
identified

In X direction (perpendicular to Electron
Deflection Magnetic field),

the three components of
Gaussian beam were identified

The inversely calculated beam
trajectory revealed the three
components come from three
different locations at meniscus.
The non-uniformity of negative
ion current density at the
meniscus was also identified.
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Responses to the perturbations

Plasma Grid
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Responses to the RF field
N

Meniscus responses to the externally applied RF field
Is discussed based on the single beamlet dynamics

The main difference from the J-PARC source
experiment is the plasma production.
In our experiment, Arc source + RF field (as a

perturbation)
=> Plasma production effects could be minimized.
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The beam oscillation at the plasma production
RF frequency and at the second harmonics
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Overview of the Experimental Setup
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An RF electric field is applied to the plasma in front of the meniscus,
and the responses of the beamlet is experimentally investigated in this study. 10



RF antenna

Rogosky-type RF antenna.
) ElectricField [V/m] (PG positon)
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Pre =100 mW , Center position Err ~ 30 V/m
B 11



RF Matching Circuit

n-matching circuit
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Although matching frequency is slightly(~0.02MHz) shifted between w/ and w/o the plasma.
Reflection rate 1s suppressed less than 20% 1n this experiment. >



Fast Beamlet Monitor

o 40 MHz 100 MS/s
- 2
-2
- 10 kﬂ[] AMP | DAQ T )—
] T
«—t " Ii
J:~ 70V
X
l FBM (Fast Beamlet Monitor)



ol el

Contents

Introduction
- background and motivation

Experiment
Results and Discussions

Summary

14




Beamlet Responses to RF Electric Field
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RF Power Dependence

Response of Axis

Response of Width
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The responses of the beamlet width is proportional to RF electric field. e = ~ ~
The similar response can be seen in the responses of beamlet axis position. ‘/‘/ a2 X ERF I’LSC X ERF
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The higher frequency of the RF, the stronger response of the beamlet.



Characteristics of Beam Focusing
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Arc Power Dependence
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In the region where beam is over focusing, the responses are large.
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In the perveance matching region, the responses become weaker.



Arc Power Dependence
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Responses of Width
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In the region where beam is over focusing, the responses are large.
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In the perveance matching region, the responses become weaker.



Arc Power Dependence
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In the region where beam is over focusing, the responses are large.
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In the perveance matching region, the responses become weaker.



Arc Power Dependence

1.068MHz hypothesis
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The linear relation can be seen. Our assumption is confirmed.

The effect of the RF electric field on the beam focusing can be suppressed by the optimization of the perveance matching.
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Comparison with Positive beam experiment

Positive ion beamlet Summary of beamlet responses to RF field
| Positive Source | Negative Source

Odiv_RF
ook . ~1 >1
o - Bdiv_arc
2 gl 2 -
~ = w .y .
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e i
My 105 ;‘{mﬁ\\w Oscil. of axis position None Yes
No significant effect in the core . _ _ .
_ _ The oscillation of beamlet width and axis position at the RF
Robust meniscus in the core and ; ] ] ] ] ”
relatively large deviation in the requency is a possible candidate to explain the different
very edge beam divergence between RF- and Arc-negative-ion

sources.
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Summary

Superpose RF electric field on the plasma in front of the meniscus and
measure the responses of the beamlet.
- Beamlet width and beamlet axis position oscillate with RF frequency.
- Amplitude of beamlet width 1s proportional to RF electric field and to
the gradient of the perveance curve dW,/dP,,, oW,
= the beamlet width oscillation can be suppressed W o (3 pew) - By
by perveance optimization

* Distortion aberration + meniscus oscillation => oscillation of the
beamlet axis position
= This may explain the reason why the beam divergence angle is
relatively large only for RF negative 1on source

In near future, more clear results with hybrid ion source experiments



