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1) Introduction
Ionized gases, also known as plasmas, 
need a continuos influx of energy , also 
known as heating, to maintain 
ionization. Heating  methods:  (a) 
microwave and (b) radiofrequency (not 
dissimilar from microwave food 
cooking) ; (c) arc. Microwaves/rf are 
f f d i l f ioften preferred in plasmas for ion 

production [ ...] 
(a) ECRIS (Electron Cyclotron Resonance Ion Source [4]; 
(b) I d ti l C l d Pl (ICP)(b) Inductively Coupled Plasma (ICP).

When ne equals to the cutoff density nc

where  is the angular microwave frequency, we have 

Typically n = 1018 m-3 in ion source center, so microwave source (ECRIS [4]) are below

(c) arc: a known current of e- fast ionizes (red 
dots) gas, giving  H2

+ and (cold) e 
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Typically ne  10 m in ion source center,  so  microwave source   (ECRIS [4])  are below 
cut off density and radiofrequency plasma (b) have density over the cutoff
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The plasma can couple to rf coil in two modes

1) Capacitive Coupled1) Capacitive  Coupled 
Plasma (E-Mode : very low 
electron density, the axial 
l t i fi ld E [13] di tlelectric field Ez [13] directly 

accelerates them, and de-
confines them (that,  Ez 

rf coil

pushes them out of the 
plasma)

2) Inductive Coupled Plasma (H-mode, dense plasma); axial electric field Ez
is suppressed (by a slotted screen or by plasma polarization); the weaker Eϑ

i i i i i i iaccelerates  electrons in multisteps,  by stochastic or collision phase mixing, 
and electron energy distribution is broad (similar to a Maxwellian one).
We restrict to this coupling.
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2) RADIOFREQUENCY (rf) HEATING
a) The simpler model: 
assuming that plasma 
b h th d f

Bz
coil

Irf
coil

There are rf losses in the

behaves as the secondary  of a 
transformer; this model may 
overestimate efficiencies resonating 

capacitance and 
rf 

generator

electrostatic 
shielding 
(optional)

coilEq

jqThere are rf losses in the 
coil and the metal wall of 
the vacuum chamber, and 
in the Faraday shield 

p
matching network

generator

lab 
d

b) A next simpler model 
when used source chassis ground

Assuming  conductivity  is known in plasmas (see later), rf heating is a typical 
'lossy dielectric problem' (analogy: cooking; rf ovens for ion sources;  cold crubibles )
Plasma (or a screen) shields electric potential, so that only azimuthal 

t f t t ti l ipart of vector potential remains: 

is usually understood 
Maxwellï
where Uk is applied voltage/radians, a comma means ‘partial differentiation’ and Q depends on material

(2a)
y
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2.2) The conductivity in plasma (mainly due to electrons)

In plasma rf fieldIn plasma, rf field 
strength is not 
uniform (typically 
it is decaying, that 
is the skin effect), 

d f i l dand rf includes 
both magneyic and 
electric field soelectric field so 
electron motion is 
very complicate, as 
easily seen in one-
particle 
i l ti lsimulations, also 

for weak plasma 
(electron density n

(a) weak plasma, uniform Bz and Ex
(b) weak plasma, uniform Bz and 

Figure: samples of electron orbits in rf fields in
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(electron density ne
to zero) (c) strong plasma, ie skin depth  smaller then radius Rw
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2.3) the local conductivity   model and the skin depth
Strictly speaking conductivity is nonlocal operator (defined by a 
f ti l d i ti )functional derivative)

A local expression including only gas collision friction or ‘collision 
equivalenced’ effect is

collision frequency due to real collision with gas or ions

with 

collision frequency due to real collision with gas or ions
stochastic term to fit anything else (see section 2.4), like 
collisions with walls or oscillation larger than skin depth  

The material function Q is then simply
g p

In induction plasma                        skin depth  approximates asp p pp
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3) Non-magnetized plasma: formulas for effective collision frequency
Let us recall that, in some simple case [6] as electron bouncing from a 
l / ll h th b b ti b l l t d f ki tiplasma/wall sheath, power absorbption can be calculated from kinwtic 

and nonlocal model. 

with thermal velocity

[The time electron spend inside rf skin layer is = 2 /vth,  so is a 
dimensionless parameter, as well  is ]d e s o ess pa a e e , as we  s ]
The effective coll. frequency is 
defined such as to obatain the 

b i hi h isame power absotion which gives 

This has two solution for , 
shown + or - in the figure. Figure: Plots of  / vs  from eqs (8) or (9) in
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shown  or  in the figure. 
Also compare [Jain,2018]

Figure: Plots of  c/ vs , from eqs. (8) or (9) in 
[Cavenago, GASS 2020 (virtual, IEEExplore)]
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4) Magnetized plasmas  and plasma model
We have 

y [m]

with static magnetic fields Bs, which gives the well 
known cyclotron frequency s=e Bs/me, and rf y q y s s e,
magnetic field with amplitude Bf, and similarly f=e 
Bf/me. We can combined both as

Motion of e- with Bf=5 G and 
Bs = - 2 G

Generalizing ref [Tuszewski, 1997 Phys. Plasmas] 
formula, for                         the conductivity is about

Eiz

niziz
2D MODEL The static magnetic field is azimuth 
averaged as

Figure: Ec ,the energy lost per pair (e ion+) 
produced vs the plasma electron temperature Te; 
note its peak for Te<3 eV. Reason is that 
excitation rate is there much greater than 
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g
ionization rate, as shownTOTAL IONIZATION RATE
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Plasma heat diffusion balances with electromagnetic heat Ph and energy loss in ionization 

where Ke is thermal conducitivity, uB the Bohm speed, Kiz (Te) is the ionization 
costant (see graph for niz) and Eiz is the energy loss per ionization pair (see graph)

Ions accelrated by sheaths before they hit wall 
where their energy is wasted. Since typical 
sheath are localized and requires a thin mesh for

Eiz

sheath are localized and requires a thin mesh for 
PDE solution, we exclude them from PDE 
solution domain, including known sheath effect 
in boundary conditions: nizin boundary conditions:  iz

(with n the outward normal vector), that is the 
heat flow at wall equals the energy lost by ions 

Figure: Ec ,the energy lost per pair (e ion+) 
produced vs the plasma electron temperature Te; 
note its peak for Te<3 eV. Reason is that 
excitation rate is there much greater than 
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g
ionization rate, as shown



MODEL We require quasi neutrality   
that is ne = ni (positive ion) almost everywhere (since we get H- only near extraction)

and that flow of electrons e originates from ionization rate niz as the flow of ions  
i does

that is  ne  ni (positive ion) almost everywhere (since we get H only  near extraction)

DIFFUSION The slower charges (ions typically) drag the opposite charges, so 

neglecting the ponderomotive Bf effects (sp=0), with Da the ambipolar diffusion 

or simply 

p
coefficient.  Let  the ambipolar diffusion velocity va and the ion thermal speed vth

i be  

when va much lower vth
i ;                                                                                           

otherwise, Da is smoothly reduced so that va ≤vth
i

BOUNDARIES Some secondary electron emission (SEE) from wall may helpBOUNDARIES Some secondary electron emission (SEE) from wall may help  
plasma (and in ECRIS source wall coating effect was well known; Drentje, 2003, 
Bentounes, 2018); so we call see the fraction of e/ions (re)emitted from walls
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5) Solution and results: 5.1 Work flow of a typical multiphysics simulation
There are two good reasons for 
it ti l i f i d literative solving of previous model:
1) Some variable (as ne or Te) are 
real valued, some are complex 
(magnetic potential phasor) , so ne 
and Te must be kept real against 
rounding error effects
2) The problem is nonlinear (it may 
have many solutions in principle), 
so the user has to give an adequate 
initial guess, which is easier for real 
variables alone
3) PDE are singular at ne =0 and Te=0, 

As practical fact, computer RAM is 
limited (not a TB yet): so in our code Figure 5 Major steps of numerical

) g ,
so we  impose ne>0 and Te>0 

limited (not a TB yet):  so in our code 
solution is also performed in 2D with 
preliminary averaging of the static 
magnetic field (which has a 3D

Figure 5. Major steps of numerical 
simulations.
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magnetic field (which has a 3D 
structure, with strong multipoles).  
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5.2) Results;  see=0 case
Beware: Any correct model of ionization and rf 
absorption in plasma typically includes  a possible 
instability: the more electron are produced the more rf 
power can be adsorbed which gives even more 
electrons, provided gas density ng and coil current is 
kept constant. Stabilization is more easily inbuilt in 
the model by adjusting gas density so to have a 
reasonable plasma density at given point (set by 
experience or as experimental input data) 

Once model has converged, the density 
typically peaks on source axis, where  
l fi t i b tt (plasma confinement is better (so more 

plasma accumulates)

Similarly the induction rf filter peaks on the 

Plasma density ne and ’pseudo-flux-
li ’ f f ti fi ld (th t i l l

y p
rf coil; it is possible to define pseudo flux 
lines of rf magnetic field, as the contour 
level of  r |Aϑ|; the absolute value takes care 

lines’ of rf magnetic field (that is, level 
curve of r|Aϑ |). Note the old NIO1 
design with only 5 turn coils

of phasor rf field and in static limit, gives the 
usual flux line
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5.2.1) NIO1 with 7 turn coil as built
Static magnetic field is providef in NIO1 by 3Static magnetic field is providef in NIO1 by 3 
terms: a strong rear multipole; a significant field 
near PG, due to the fringe field of acceleraot 
electrodes; a filter field with a bell shaped z-electrodes; a filter field, with a bell shaped z-
profile centered in the fron region (filter field 
strength Bfa is adjustable)
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(a) Result for density ne, with Bfa=8 mT with rf power 1300 W and gas pressure about 0.75 Pa



Result for Te on z-axis, with rf power 
1300 W and gas pressure about 0.75 Pa, 
for  ranging Bfa=0 .. 9 mT . 
Note that Te<2eV at extraction region 
z>0.11 m requires Bfa > 7 mT, as usually q fa y
set  in the experiments
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Result for  Te, with Bfa=8 mT with rf power 1300 W and gas pressure about 0.75 Pa



5.3) Results;  see>0 case
Here we show how plasma equilibrium depend from assumed see, for a sensitivity study (to be later 
rapidly compared with experiments). In principle, see can be any function of boundaries, but we 
restrict to three zones and parameters. On metal walls, see=s0 (with value scanned <0.4); on dielectric 
walls, we add a quantity s1<0.4, so that see=s0+s1. In both zones

where zw=38 mm from NIO1 geometry, s is a smoothed Heaviside function. Optionally, an 
extraction effect can be added assuming see=0 at extraction, for r<rh (11.4 mm for equal area)g ee , h ( q )
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Note the differences in central Te and in extraction ne



continue 5.3) Results;  see>0 case
Finally, from known profiles of ne and Te, and atomic data [Johnson, 1973] a global plasma luminosity 
f li f i h (i i l f h i l li f i h f NIO1) b l l d d ifor any line of sight (in particular, for the axial line of sight of NIO1) can be calculated, and is very 
sensitive to central Te. Also the extraction current in Cs-free regimes  can be guessed with comparison 
to previous works [Pagano, 2007, Mossbach 2005) for the nH-/ne relation. We have  IH- growth with ne
and 1/Te as expected More work to calculate IH directly from ne and Te profile is in progress.and 1/Te  as expected .More work to calculate IH- directly from ne and Te profile is in progress. 

For previous slide cases estimated plasma light emission L and ion current IFor previous slide cases, estimated plasma light emission Lux and ion current IH-

In conclusion, the model is able to predict an anit-correlation of Lux and I- (at constant source power 
and pressures) always observed in NIO1. In particular the gas conditioning experiment (in Cs-free 
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regime until 2019) show that wall can be conditioned, with results as in the  above figure range.



6) CONCLUSION
Induction heating involve both particle and EM field modeling. While a calculation of g p g
each electron trajectory  is clearly too long especially for ion source design, a vast 
literature has developed useful approximation to this problem, introducing the so called 
stochastic heating, with several formulas here reviewed. Induction heating of plasma so 
reduces to typical nonlinear problem of partial differential equation (PDE), with gas 
ionization rate and rf power absorption in positive feedback. Stability is obtained (both in 
the experiment and in the modeling) by the limited amount of rf power and gas available. 
Relation between physical boundary condition and possible wall status (similar to known 
effect in ECRIS) was introduced and parameterized by a see coefficient. The simple 
model solution well reproduce observed trends for gas density, equivalent plasma 

i d l l i i M f ll l i i i iresistance and plasma luminosity. Most of all, solution are sensitive  to see in a way 
consistent with some experimental evidence from NIO1.
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