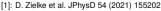
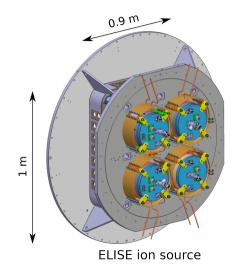


Numerical study of RF power coupling in fusion-relevant single- and multi-driver H⁻ ion sources

D. Zielke¹, S. Briefi¹ and U. Fantz^{1,2}

¹Max-Planck-Institut für Plasmaphysik, Garching ²Universität Augsburg



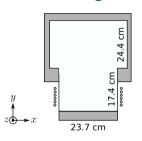

Motivation

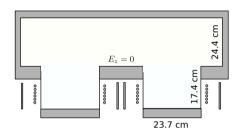
- Electrical measurements performed in single-driver NNBI RF ion source^[1] to determine RF power transfer efficiency $\eta = \frac{P_{\rm plasma}}{P_{\rm per}}$
- Low $\eta pprox rac{55\,\mathrm{kW}}{100\,\mathrm{kW}} =$ 0.55 found
- Recent measurements in multi-driver setup ELISE w/o magnetic filter field (FF): $\eta \approx 0.3$ (0.4 with FF)
- Similar values found in SPIDER^[2]
- Why is η decreased in multi-driver setups?
- How can it be improved?

^{[2]:} P. Jain et al. PPCF 64 (2022) 095018

RF coupling optimization via numerical modeling

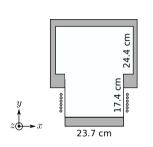
- Experimental optimization difficult
- Large number of external parameters and mixing of different effects
- Model needed for systematic study of RF power coupling in regime of RF ion source
 - Low $p_{\rm fill} \leq 0.3 \, \mathrm{Pa}$
 - Large $P_{\mathrm{RF}} \leq 100\,\mathrm{kW}$ per driver
 - Low RF of 1 MHz
- State-of-the-art numerical fluid-electromagnetic model developed and benchmarked successfully^{[3],[4]}
- Optimization studies revealed large optimization possibilities by increasing axial driver length and RF^[5]
- $\bullet \ \ \text{Lower losses, less probability for RF breakdowns} \rightarrow \text{increased performance and reliability} \\$

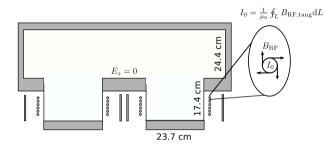

^{[3]:} D. Zielke et al. PSST, 30 (2021) 065011


^{[4]:} D. Zielke et al. PSST, 31 (2022) 035019

^{[5]:} D. Zielke et al. submitted to NF

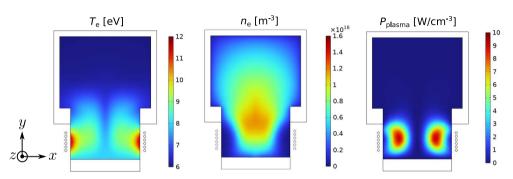
Fluid-electromagnetic model inputs





- 2D cartesian geometry (horizontal cut)
- Uniform $n_{\mathrm{H}}, n_{\mathrm{H_2}}~(\widehat{=}~0.3\,\mathrm{Pa})$
- No cusp field in driver backplate, no magnetic filter field
- $P_{
 m plasma} = 25\,{\rm kW}$ per driver
- Backplates and EM-shields assumed perfect conductors \rightarrow $E_z = 0$
- Measured network resistances $R_{\rm net,SD} = 0.6 \,\Omega$, $R_{\rm net,MD} = 1.2 \,\Omega$

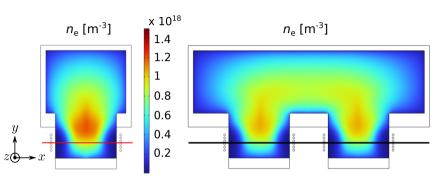
Fluid-electromagnetic model equations & outputs



- Fully time dependent spatial distributions of $n_{\mathrm{H_{i}^{+}}}, u_{\mathrm{i}}, \mathrm{i} \in \{\mathrm{H^{+}}, \mathrm{H_{2}^{+}}, \mathrm{H_{3}^{+}}\}, \phi_{\mathrm{plasma}}, n_{\mathrm{e}}, u_{\mathrm{e}}, T_{\mathrm{e}}, q_{\mathrm{e}}, E_{\mathrm{RF}}, B_{\mathrm{RF}}$
- Low RF of 1 MHz and $B_{\rm RF}\sim 100\,G\to viscosity,$ Lorentz force, RF-magnetized heat flux
- Self-consistent RF coil current amplitude I_0 controlled by integral controller

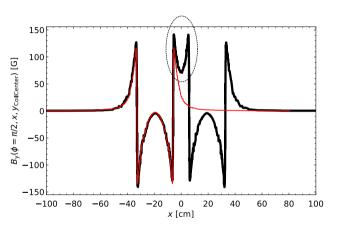
•
$$\eta = \frac{P_{\mathrm{plasma}}}{P_{\mathrm{RF}}} = \frac{P_{\mathrm{plasma}}}{(P_{\mathrm{plasma}} + \frac{1}{2}R_{\mathrm{net}}l_0^2)}$$

Benchmark at 0.3 Pa and $P_{plasma} = 25 \text{ kW}$



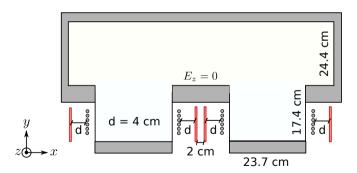
- All quantities shown above RF averaged over one steady state RF cycle
- Calculated and experimentally measured T $_{
 m e}$ and n $_{
 m e}$ agree well
- Calculated $I_0 = 263$ A ($\eta = 0.55$) agrees well with experimental $I_0 = 250$ A ($\eta = 0.57$) \checkmark
- More model results see contribution of S. Briefi to this conference

Multi-driver at 0.3 Pa and $P_{plasma} = 25 \text{ kW per driver}$



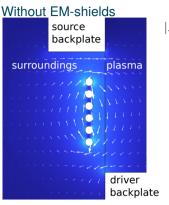
- No EM-shields for illustrative purposes
- Similar distributions of $T_{\rm e}, n_{\rm e}, P_{
 m plasma}$ in all drivers
- However, $I_{0,\mathrm{MD}}=284\,\mathrm{A}$ > $I_{0,\mathrm{SD}}=263\,\mathrm{A}$ $o \eta_{\mathrm{MD}}=0.51<\eta_{\mathrm{SD}}=0.55$
- Compare RF magnetic field component B_y along line-of-sights

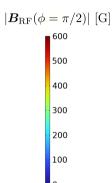
Comparison RF magnetic fields

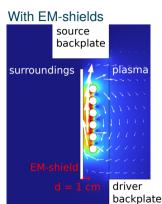


- Changed spatial distribution of $B_{\rm RF}$ due to presence of second driver
- On RF coil circumference: $I_0 = \frac{1}{\mu_0} \oint_L B_{\mathrm{RF,tang}} \mathrm{d}L \to \text{larger applied } I_0$

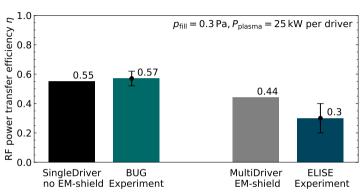
Conductive EM-shields in ELISE numerical model


- In multi-driver ion sources, conductive 'EM-shields' are present to avoid electrostatic and electromagnetic mutual coupling
- Model of ELISE ion source




• Boundary condition $E_z = 0$ at each EM-shield changes RF field distributions

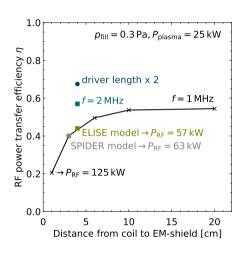
Changed B_{RF} field distribution due to EM-shields



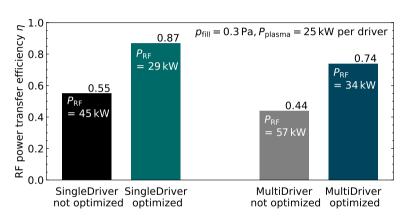
- Uniform distribution of low B_{RF} around RF coil circumferences
- Resulting low $I_0 = \frac{1}{\mu_0} \oint_L B_{\mathrm{RF,tang}} \mathrm{d}L$

- Highly non-uniform distribution of $B_{
 m RF}$
- Increased $B_{\mathrm{RF,tang}} \rightarrow \text{larger } I_0 \text{ needed}$

Comparison with experimentally obtained η


- Impact of EM-shields on η more pronounced in experiment
- Possibly caused by 3D effects: EM-shields support structure and RF coil feedthroughs

Impact of distance RF-coil - EM-shield on η



- Isolate effect of distance between RF coil and EM-shield
- · Study performed using single-driver
- Highly nonlinear behavior of η found
- Optimization measures proposed for single-driver without EM-shields still apply

Optimized single- and multi-driver setups

- Optimized setup: doubling the axial driver length and doubling the RF
- Needed P_{RF} per driver is greatly reduced

Conclusion

- Advanced state-of-the-art 2D fluid-electromagnetic model self-consistently describes RF power coupling in NNBI RF ion sources
- Why is η decreased in multi-driver setups?
 - EM-shields change spatial distribution of EM-fields around RF coil
 - Larger $I_0 o$ lower ηo higher P_{RF} needed
- How can it be improved?
 - Effect highly nonlinear with distance between coil and EM-shield
 - Optimization measures found for single driver apply for multi-driver as well
 - Increasing axial length and RF beneficial
 - Needed P_{RF} greatly reduced
- · What comes next?
 - 3D implementation of the model

Literature [1], [2], [3], [4]

D. Zielke et al.

RF power transfer efficiency and plasma parameters of low pressure high power ICPs. Journal of Physics D: Applied Physics, 54(15):155202, feb 2021.

P. Jain et al.

Investigation of RF driver equivalent impedance in the inductively coupled SPIDER ion source. Plasma Physics and Controlled Fusion, 64(9):095018, aug 2022.

D. Zielke et al.

Self-consistent fluid model for simulating power coupling in hydrogen ICPs at 1 MHz including the nonlinear RF lorentz force.

Plasma Sources Science and Technology, 30(6):065011, jun 2021.

D. Zielke et al.

Modeling inductive radio frequency coupling in powerful negative hydrogen ion sources: validating a self-consistent fluid model.

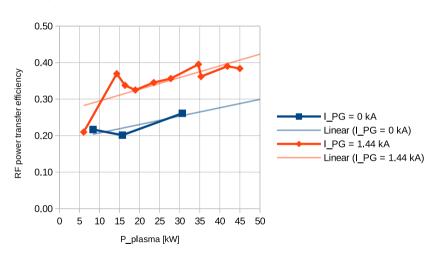
Plasma Sources Science and Technology, 31(3):035019, mar 2022.

Backup: Why were EM shields introduced in ELISE?

- Observation in RADI: inertia-cooled Faraday shields were destroyed during short-pulse operation
- Countermeasures were taken to prevent this at ELISE
 - · Water-cooled bridges of Faraday shields
 - Monitoring impurity levels (oxygen was present in RADI)
 - Coil 'symmetrization'
 - Connection of potentials at the Faraday shields (grounded vs. floating)
 - EM shields (which suppress electromagnetic and electrostatic coupling between drivers)
- Observation: no damage of Faraday shields at ELISE

Backup: PDEs for description of RF power coupling

$$\begin{split} \partial_t n_\mathrm{e} + \nabla \cdot n_\mathrm{e} \boldsymbol{u}_\mathrm{e} &= \mathcal{R}_\mathrm{e} \\ m_\mathrm{e} n_\mathrm{e} (\partial_t \boldsymbol{u}_\mathrm{e} + (\boldsymbol{u}_\mathrm{e} \cdot \nabla) \boldsymbol{u}_\mathrm{e}) &= -\nabla n_\mathrm{e} \mathrm{e} T_\mathrm{e} - \nabla \cdot \underline{\underline{\pi}_\mathrm{e}} - \mathrm{e} n_\mathrm{e} (\boldsymbol{E} + \boldsymbol{u}_\mathrm{e} \times \boldsymbol{B}) - \mathcal{F}_\mathrm{e} \\ \partial_t \frac{3}{2} \rho_\mathrm{e} + \nabla \cdot (\frac{5}{2} \rho_\mathrm{e} \boldsymbol{u}_\mathrm{e} + \underline{\underline{\pi}_\mathrm{e}} \boldsymbol{u}_\mathrm{e} + \boldsymbol{q}_\mathrm{e}) + \mathrm{e} n_\mathrm{e} \boldsymbol{u}_\mathrm{e} \cdot \boldsymbol{E} &= \delta_t E \\ \\ \underline{\underline{\pi}_\mathrm{e}} - \frac{\mathrm{e}}{m_\mathrm{e} \nu_\mathrm{en}} (\boldsymbol{B} \times \underline{\underline{\pi}_\mathrm{e}} - \underline{\underline{\pi}_\mathrm{e}} \times \boldsymbol{B}) &= -\mu_\mathrm{e} \left(\nabla \boldsymbol{u}_\mathrm{e} + (\nabla \boldsymbol{u}_\mathrm{e})^\mathsf{T} - \frac{2}{3} (\nabla \cdot \boldsymbol{u}_\mathrm{e}) \underline{\boldsymbol{l}}_\mathrm{e} \right) \\ \boldsymbol{q}_\mathrm{e} + \frac{\mathrm{e}}{m_\mathrm{e} \nu_\mathrm{en}} \boldsymbol{q}_\mathrm{e} \times \boldsymbol{B} &= -\kappa_\mathrm{e} \nabla \mathrm{e} T_\mathrm{e} \end{split}$$


Backup: Experimental observations regarding R_{network}

- $2 \cdot R_{\text{network,BUG}} \approx R_{\text{network,ELISE}}$
- $R_{\text{network,SPIDER}} \approx 1.5 \cdot R_{\text{network,ELISE}}$
- Good agreement with EM simulations
- Conclusion: R_{network} behaves as expected

Backup: Measured η in ELISE

