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Nonlinear timestep benchmark

• Test with STORM code, typical of BOUT++ drift-reduced fluid models

- extended with zero-𝑚𝑒 options for both electrostatic and electromagnetic modes

- implicit time stepping: CVODE (adaptive step-size, order) from SUNDIALS suite [2]

• Simulation of isolated SOL filament, in slab geometry

- moderate computational cost

- includes features of SOL turbulence: highly nonlinear, sheath boundary conditions

- simulation results insensitive to choice of Ohm’s law due to low 𝛽

• Time stepping in simulations follows expectation from dispersion relations

- higher frequency or damping rate makes implicit solve more expensive

- implicit solver can step over strongly damped modes

- time step consistent during simulation, despite evolution and break-up of filament

Low density : space charge and displacement current

• Scrape-off layer (SOL) plasma can reach low density

- electromagnetic Ohm’s law without electron mass

- resolving 𝜌𝑠 gives 𝑘⊥~2𝜋/𝜌𝑠 → wave speeds ~10𝑉𝐴
- exceeds speed of light at 𝐵 = 1T for density below 𝑛0 ~ 2.6 × 1017m−3

- electromagnetic Ohm’s law with electron mass

- fastest wave speeds ~ 𝑣𝑡𝑒 or ~ 𝑉𝐴
- exceeds speed of light at 𝐵 = 5T for density below 𝑛0 ~ 0.7 × 1017m−3

• Reconsider space charge and displacement current

- contribution from parallel displacement current partially cancels space charge 

- remaining space charge effect modifies vorticity

- no parallel coupling

- perpendicular electric field energy bounded

- waves limited to less than light speed

- dispersion relation 𝜔2 ≫ 𝑘||
2𝑐𝑠
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Model 1/|𝜔analytic| (ns) time step (ns) iterations/step wall-clock time (hrs)

Electrostatic 

zero-𝑚𝑒
0.0091 0.828 8.76 30.4

Electrostatic 

finite-𝑚𝑒
2.47 0.899 3.64 11.5

Electromagnetic 

zero-𝑚𝑒
3.18 7.31 6.41 3.21

Electromagnetic 

finite-𝑚𝑒
25.8 9.25 4.35 2.36
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Overview

• Drift-reduced fluid models are routinely used for edge simulations

• We review the impact of the model Ohm’s law on the system dispersion 

relation [1]

• Linear analysis of supported waves highlights common numerical issues

- demonstrated with STORM filament simulations

• Wave frequency sets CFL limit (explicit), cost of iterative inversion (implicit)

Summary

• Difficulties in electrostatic edge plasma simulations can be traced through 

the system dispersion relation 

• Correctly limiting cold ion system wave speeds requires

- electromagnetic Ohm’s law with finite electron mass

- space charge contribution in low density regions

• Model selection can mitigate computational cost due to small 𝛽 or 𝑚𝑒

Reduced fluid model

• Consider a minimal reduced fluid model, isothermal, low beta 𝐄⊥ ≈ −∇⊥𝜙

- isothermal → parallel friction 𝐛 ∙ 𝐅 = 𝑒𝑛0𝜂𝐽||, Spitzer resistivity 𝜂 = 0.51𝑚𝑒/𝑛0𝑒
2𝜏𝑒𝑖

- we linearise 𝜕|| → 𝑖𝑘||, 𝜕𝑡 → −𝑖𝜔, ∇⊥
2→ −𝑘⊥

2 to form dispersion relation

• The system is closed with a model Ohm’s law

Electrostatic model

• Isothermal electrostatic resistive Ohm’s law

- neglecting electron mass and ion parallel flow, so 𝐽|| = −𝑒𝑛𝑣||𝑒

- dispersion relation:

- represents parallel diffusion equation, diffusion coefficient D

- 𝑘⊥ = 0 modes communicate instantly along field lines: fast diffusion limits timestep

• Retain finite electron mass

- dispersion relation describes waves:

- wave speed diverges as 𝑘⊥ → 0

- cold plasma, zero resistivity limit recognise electrostatic wave

- known to limit timestep in gyrokinetic simulations

• Evolving ion parallel momentum introduces ion acoustic wave

- neglecting electron mass and resistivity:

- recognise finite sound radius corrections 

- ion sound radius couples diffusive mode and acoustic wave at finite 𝑘⊥

- can neglect parallel ion momentum equation when 𝜔2 ≫ 𝑘||
2𝑐𝑠
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- i.e. 𝑚𝑖 → ∞ or 𝑘⊥ → 0 at finite 𝑘||, recover diffusive mode 

- electrostatic wave dispersion relation only multiplied by 1 +𝑚𝑒/𝑚𝑖

- wave speed still diverging as 𝑘⊥ → 0

Electromagnetic model

• Electromagnetic Ohm’s law neglecting electron mass 

- dispersion relation no longer diverging as 𝑘⊥ → 0

- parallel wave speed now diverges as 𝑘⊥ → ∞

- neglecting resistivity and ion acoustic wave at low 𝛽 = 𝑐𝑠
2/𝑉𝐴

2 , 𝑉𝐴
2 = 𝐵2/𝜇0𝑚𝑖𝑛:

- recognize cause as kinetic Alfvén wave

• With finite electron mass

- neglecting resistivity:

- recognize combination of 

inertial and kinetic Alfvén wave

- no longer diverging:

- as 𝑘⊥ → ∞ full dispersion relation →
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Left: time step (thick) compared to inverse analytic mode frequency (thin) and right: iteration count for 

the different models (see table for colours) as a function of simulation time
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