WHAT IS A PARTON

SHOWER?

ZOLTAN NAGY
DESY-HH

In collaboration with Dave Soper

HARPS Meeting, Genova, October 29-31, 2018



Perturbative Cross Section

The main focus of this workshop is to calculate the pQCD cross sections as precise as possible, thus

we have a pretty integral Bare PDE
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Error of the factorization
(Cannot be beaten by calculating higher and higher order.)

and here the MSbar parton in parton renormalised PDF is
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Motivation

For a generic IR safe observable we can do either fixed order or parton shower calculations

Fixed order calculations Parton shower algorithms
v’ Systematically improvable by working to higher order. X But what about parton showers?

» The procedure is well defined and can be carried » Are they just QCD inspired or fit into a scheme
out order by order. The definition of cross section that can be systematically improved by working
tells us what to do. to higher order?

» The subtraction procedure regularizes the as series » Is the (all order) shower cross section equal to

and turns the d=4-2¢ dimensional expression to a the pQCD (all order) cross section?

d=4 dimensional one. . .
» Is there a shower way to regularize as series?

» Counter-terms are defined order by order , ,
v A jet consists of many partons

» The result is independent of the ambiguities of the

counter-terms order by order. v Sums up logarithms (only for some observable).

X Only few partons represent a jet.

X Suffers from large logarithms

What is the relation between fixed
order and parton shower?



Motivation

Fixed order NLO PDF is a well defined and systematically improvable approximation of the usual
LO PDF:
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But we never use this and we prefer the fully exponentiated solution of the DGLAP equation
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A strong statement: The fixed order NLO, NNLO and NkLO calculations are just approximations to
the fully exponentiated LO, NLO and Nk-1LO calculations.

A brave claim: The parton shower provides the fully exponentiated LO, NLO and Nk-1LO
calculations.



Statistical Space

Introducing the statistical space we can represent the QCD density operator as a vector

Bare PDFs for both incoming hadrons

—
o) = (1] Oy [F(u?) o Zr(u®)] [p(1?))
"~ N —’
All the initial and final ‘ M> < M‘

state sums and integrals
QCD density operator
Describes the fully exclusive

L . , partonic final states.
The physical cross section is RG invariant as well as the

QCD density operator and the bare PDF.
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Infrared Sensitive Operator

Amplitudes have soft or collinear singularities and they have divergences 1/e from the loops
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- \\/e want to describe the singularity structure in process independent way.
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- Everything in the yellow blobs is considered hard.



Infrared Sensitive Operator

Consider the momenta coming from the hard part /

as fixed and on shell. W
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This gives us an operator as /
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Infrared Sensitive Operator

We can consider a more constructive approach to build the full

infrared sensitive operator. This operator basically represents the W@
QCD density operator of a m — X (anything) process. %Q
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Constrains the off-shellness of the hard partons




Infrared Sensitive Operator

> \Ne have to introduce an ultraviolet cutoff to capture only the IR part of the amplitudes. At
first order level in the real graphs it is just a cut on an infrared sensitive variable of the splitting:
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m The D operator depends on two scales (renormalization scale y and the shower scale us) but
we always set them equal.

ps =

" \Ne don’t do eikonal approximation in the soft gluon exchange between two external lines
because that messes up the Glauber region.

> \\/e also need a momentum mapping. This can be tricky at higher order level and not necessary
the simpler is the better. We prefer “global” momentum mapping.



NkLO calculations

Subtractions

Singularities cancel each other here /
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Normally D~ (?) is constructed by hand and D(u?) is its inverse.



NkLO calculations

Collecting all the singularities in an operator,
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Then we have found that (1|X(x*)|{p, f,c',c,s’, s} ) = finite. Now define a finite operator that

= [F(u?) 0 Zr(u?)] D(*) F~H (1)

leaves the momenta and flavors unchanged in such a way that
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IR finite operator

With this we have the usual fixed order cross section structure:
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Shower Cross Section

At this point we have everything to derive the shower cross section. Let us do it!

Start with the fixed order (all order) cross section
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Insert an unit operator
o[04 = (1O, X () V=1 (1) V(i) F(1?) | pu(n®))

and restructure the expression
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Shower Cross Section

Insert another unit operator



Shower Cross Section

Let us play this game one more time!

Insert another unit operator

o[05] = (1|0 [X () V()] [X (1) V= (1)) [X () V7 (p?)]
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and restructure the expression
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Shower Cross Section

We can simplify this further introducing the evolution operators. Thus we have
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and with this notation the cross section is
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Shower Cross Section

We have to deal with the singular part.
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and

V() =1
since this operator is finite.
Unitary shower Hopefully n << 2k+1
k+1
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Resummation of threshold effects




Threshold Logs

The threshold operator is defined by
Uy (i ) = V7 (1) V(pg) = Texp (/ "l 8v(u2))
v’

where the generators are
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pure DGLAP evolution

> Doesn’t create new partons.
> Provides perturbative corrections to the hard part.

i Sums up threshold logarithms



Unitary Shower

The unitary shower operator is
2 2\ 2\ y1—1/. 2y1 1 2y y—1(,2) = T “HdMQSQ
U(pg, py) = [ X(pe) V()] X)) V™ (py) = Texp — S(p?)
7

where the generators are
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W Creates new partons.
> Preserves probabilities: (1|U(#?,M§) = (1‘

i Sums up “visible” logarithms (accuracy can depend on the observable)



Shower Kernel

The generators of the unitary shower can be expanded in the coupling:
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Real operator Integrated real operator Glauber gluon
all the quantum numbers of the - all the quantum numbers of the imaginary part of
emitted parton is resolved emitted parton is integrated out the virtual graphs
- it is not the contribution of the ~ 1T

virtual graphs

Note, the first order kernel is independent of the real part of the virtual graphs.



Shower Kernel

At second order level we are not that lucky. The shower kernel is much more complicated:
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This is highly non-trivial operator and cancelation of all the singularities in the first term is rather
delicate.
Double real Double virtual
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Summary

® Fixed order calculations

olO0;] = 1|V (p*) F(u?) D~ (1) O |p(1?))
+ O(aif“L%”) + O(AMHop/17)

can be systematically improved by working to higher order.

e Parton shower calculations

ol0] = (1|0 Ui, °) Uy (g, 12) F(u?) D1 (1) | p(p?))
+ O(aft L") + O(uf /15)

can be systematically improved by working to higher order.
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Implementation

DEDUCTOR is designed to do a better job with color, spin and resummation of large logarithms compared
to other shower generators.

® | ambda, KT and angular ordering

® | C+ color treatment. It allows us to do color evolution at amplitude level
® Threshold log resummation

® Spin correlations are not yet computed

Next version is available soon...

e Fully exponentiated Glauber (Coulomb) gluon effects

o \Wide angle soft gluon effects perturbatively.

It is available from

http://www.desy.de/~znagy/deductor
http://pages.uoregon.edu/soper/deductor
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Threshold Effect in Jet Production

Ratios to NLO jet cross section, R = 0.4
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