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‣ Perturbative accuracy now defined in terms of 
how many towers of logarithms one sums up 

‣ e.g. 

LL    ~ 100% uncertainty 

NLL  ~ 20% uncertainty 

NNLL ~ 5% uncertainty 

…
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‣ Approach I :  

i) Build an effective field theory of QCD by integrating out the irrelevant d.o.f. (i.e. hard radiation) 

ii) Evolution Equations arise from RG invariance
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‣ Approach II :  

i) Build a simplified model of QCD amplitudes in soft and collinear limits, simulate radiation at all orders 

ii) Evolution formulated in algorithmic form
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[Bizon, Chen, Gehrmann - De Ridder, Gehrmann,  
Glover, Huss, Re, Rottoli, Torrielli, PM ’18]



Exploiting synergies in resummation
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‣ Formal link between the two formulations is tricky, some progress recently 

‣ A solid connection will shed more light on infrared structure of QCD, and allow us to address some complicated 
problems from a different angle 

‣ e.g.  

• multi-leg processes 

• multi-scale problems 

• non-global observables 

• …
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‣ e.g. e+e- —> jets
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Two scale problems: rIRC safe & global

Virtual corrections (form factor) Real (& real-virtual) corrections

d-dimensional phase space observable



‣ This problem has a general solution at NNLL (                       )
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Two scale problems: rIRC safe & global

Sudakov radiator

NNLL Transfer function

NNLL virtual and collinear constants

NLL Transfer function 
[Banfi, Salam, Zanderighi ’01 - ’04]

[Banfi, El Menoufi, PM 1807.11487] 
[Banfi, McAslan, Zanderighi, PM 1412.2126, 1607.03111]
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‣ This problem has a general solution at NNLL (                       )
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Two scale problems: rIRC safe & global

Analytical

Analytical/Numerical

[Banfi, El Menoufi, PM 1807.11487] 
[Banfi, McAslan, Zanderighi, PM 1412.2126, 1607.03111]
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‣ This problem has a general solution at NNLL (                       )
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Two scale problems: the Radiator

Analytical
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‣ Consider the resummed form factor
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Sudakov radiator: virtual corrections

Soft Webs in dim. reg.

endpoint coefficient of AP  
 splitting functions

strong coupling in dim. reg.



‣ Decompose squared amplitude in terms of correlated clusters of emissions 

‣ e.g. soft limit 

‣ Each cluster is dressed by virtual corrections
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Sudakov radiator: real (unresolved) corrections

nPC(0) nPC(1)



‣ Introduce a resolution scale (slicing parameter) such that unresolved clusters satisfy 

‣ Unresolved radiation is unconstrained by the observable —> logarithmic counting
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Sudakov radiator: real (unresolved) corrections

Unresolved radiation Resolved radiation



‣ Combination of virtuals and unresolved clusters defines the radiator (cutoff dependence 
cancels against that of resolved radiation)
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Sudakov radiator at NNLL

Starts at LL 
(double logs)

Starts at NLL 
(single logs)



‣ Soft contribution can be further decomposed as follows 

‣ massless term
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Sudakov radiator at NNLL



‣ Soft contribution can be further decomposed as follows 

‣ mass correction
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Sudakov radiator at NNLL



‣ The massless terms defines a physical coupling in the soft limit
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Physical coupling in the soft limit

—> [Catani, Marchesini, Webber ’91]

This is the only, universal,  
 as3  ingredient at NNLL !



‣ The definition of the unresolved radiation ensures that all LL are in the Radiator 

‣ One’s left with the computation of the transfer functions
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Two scale problems: the transfer functions

Analytical/Numerical



‣ Transfer functions describe radiation in well specified kinematical regimes 

‣ e.g. NLL (CAESAR): ensemble of soft-collinear gluons strongly ordered in rapidity
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...

Two scale problems: the transfer functions



‣ Transfer functions describe radiation in well specified kinematical regimes 

‣ e.g. NNLL (ARES): at most one single emission probes less singular kinematics
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• collinear emission carries a significant energy fraction 

• correction to the amplitude: hard-collinear corrections 
• correction to the observable: recoil corrections 

• soft-collinear emission gets close in rapidity to another 

• sensitive to the exact rapidity bounds: rapidity (SC) corrections 
• different clustering history for a jet algorithm: clustering corrections 

• insertion of double-soft current and corresponding virtual corrections 

• correlated corrections 

• soft emission is allowed to propagate at small rapidities 

• soft-wide-angle corrections 

• Restores correct rapidity dependence in observable 

• Gets complicated for multi leg case (interference between hard emitters) 

Two scale problems: the transfer functions



‣ Suitable for automation in a computer program 

‣  observable (in various limits) is the only external input 

‣ Agnostic to factorisation structure of the measurement function
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Automation

sc
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Some examples

Thrust Major

Durham kt algorithm

Moments of EEC & angularities



‣ Global problems with two scales have a general solution at NNLL  

‣ no need for a factorisation theorem 

‣ suitable for automation 

‣ can be systematically extended to higher orders if higher precision is needed (e.g. pT) 

‣ For more complicated observables, more efforts are required to understand the general 
structure (known at NLL) 

‣ Multi differential distributions 

‣ Only a few results available for multi-leg observables at NNLL 

‣ Full control of IR physics at NNLL requires solution of (next to leading) non-global 
logarithms 

‣ Matching ambiguity to fixed order ~few-%: pheno impact of subleading power corrections 
to be established, might be relevant in high precision observables
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Conclusions



Backup material
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‣ Soft unresolved clusters obey non-abelian (web) exponentiation theorem 

‣ Cut virtual-collinear at collinear scale, and expand to cancel real divergences
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Sudakov radiator: web exponentiation

Soft radiator

Regular terms of  
the form factor



‣ Extension to NNLL involves additional kinematic configurations: 

‣ (at most) one collinear emission can carry a significant fraction of the energy of the hard emitter (which recoils 
against it) 

‣ Corrections affect both matrix element (hard-collinear corrections) and observable (recoil corrections)
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...

Collinear corrections



‣ (at most) one soft-collinear emission has the correct rapidity bounds (approximated in the NLL ensemble) - 
rapidity corrections 

‣ (at most) one soft emission can propagate at very small rapidities (wide angle corrections)
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**

**With n>2 there are additional contributions due  to the quantum interference between 
 hard emitters starting at NLL order, due to soft-wide-angle radiation

Single-soft corrections



‣ (at most) two soft-collinear emissions get close in rapidity: 

‣ Relax strong angular ordering (clustering corrections, e.g. jet algorithms) 

‣ Treat (at most) one correlated branching exactly (correlated corrections)
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... ... ... ... ... ...

Double-soft corrections


