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Event size

1.5 MB

Collision rate

40 MHz
·

60 TB/s= 

Data buffer 

Partial data

Temporary

Permanent

160 GB/s

1.5 GB/s

yes / no

yes / no

Source: http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf 

HLT trigger system

L1 trigger system

https://twiki.cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf
https://twiki.cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf
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BDT design
• Algorithm structure
• Firmware design

Results
• VBF Higgs vs. multijet
• (Electrons vs. photons)

Comparisons
• vs. hls4ml's BDT
• vs. hls4ml's neural network

JINST 16 P08016 (2021) 

Not in paper

https://arxiv.org/abs/2104.03408
https://arxiv.org/abs/2104.03408
https://arxiv.org/abs/2104.03408
https://arxiv.org/abs/2104.03408
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• I will focus on the first two steps
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Normal decision tree
• Recursive in the number of depths

Firmware
• Not our design



   TM HongFlattened decision tree
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Flattened decision tree
• Axes are independent → Bin search problem on a grid

Firmware
• Our design
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Put this in fw

Pre-merging trees
• Pre-processed in software before implementation in firmware
• No impact on physics performance

Firmware
• Our look-up table design



   TM Hong

Samples

VBF Higgs

Multijet

Notes

Unit norm.

Inputs for BDT

Generated with
MadGraph5

+ Delphes smearing

0 1 2 3 4 5 6 7 8 9 10

|η∆|

0

0.02

0.04

0.06
U

n
it 

n
o

rm
.

0 0.5 1 1.5 2 2.5 3

|φ∆|

2−10

1−10

U
n

it 
n

o
rm

.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 (TeV)jjm

6−
10

4−10

2−10U
n

it 
n

o
rm

.

0 100 200 300 400 500 600

 (GeV)
jj

T
p

7−10

5−
10

3−
10

1−10

U
n

it 
n

o
rm

.

50 100 150 200 250 300 350 400
 (GeV)

T1
p

5−
10

4−10

3−
10

2−10

1−10

U
n

it 
n

o
rm

.

50 100 150 200 250
 (GeV)

T2
p

6−
10

4−10

2−10U
n

it 
n

o
rm

.

Samples

VBF Higgs

Multijet

Notes

Unit norm.

Inputs for BDT

Generated with
MadGraph5

+ Delphes smearing

0 1 2 3 4 5 6 7 8 9 10

|η∆|

0

0.02

0.04

0.06

U
n

it 
n

o
rm

.

0 0.5 1 1.5 2 2.5 3

|φ∆|

2−10

1−10

U
n

it 
n

o
rm

.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 (TeV)jjm

6−
10

4−10

2−10U
n

it 
n

o
rm

.

0 100 200 300 400 500 600

 (GeV)
jj

T
p

7−10

5−
10

3−
10

1−10

U
n

it 
n

o
rm

.

50 100 150 200 250 300 350 400
 (GeV)

T1
p

5−
10

4−10

3−
10

2−10

1−10

U
n

it 
n

o
rm

.

50 100 150 200 250
 (GeV)

T2
p

6−
10

4−10

2−10U
n

it 
n

o
rm

.

Leading jet pT Sub-leading jet pT

Di-jet invariant mass Di-jet pT

Pseudorapidity gap Azimuthal angle gap

Same production, two decays
• H → νvν̅v,̅ "invisible"
• H → bbb̅b,̅ thru pseudoscalars

Strategy
• Train on Multijet vs. VBF H → νvν̅v ̅
• Apply to Multijet vs. VBF H → bbb̅b ̅

Why
• Can trigger on VBF Higgs → anything
• Does it work? Yes, next slide

Motivation: VBF Higgs vs. multijet
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It works!

Performance
• Efficiency : 2x better vs. HL-LHC ATLAS
• Latency : 16 ns = 5 clock ticks

Details
• Validation : Eff. matches ATLAS Run-2 paper
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Activation function for NN
Fuzzy boundary using a turn-on function
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2-dim inputs
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Neural network 1d
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• hls4ml encodes in fixed pt 
E.g., ap_fixed⟨5,2⟩ means 

00.000
00.001
00.002
00.003
00.004
00.005
00.006
...• Advantages

Represent variety of precision, e.g., 
pT from GeV-TeV vs. φ from 0-2π

• Subtleties
Transformation adds 1-bit ambiguity

f(x1 + x2) = f(x1) + f(x2)

Equal up to one bit because of floor

Firmware adds the pre-evaluated f(x)

Data format

14

• We encode in N-bit integers
E.g., ap_int⟨3⟩ means 0 - 7 range

000
001
010
011
100
101
110
111 • Advantages

More familiar to physicists who use 
floating / fixed values

• Subtleties
Need to use "quantized aware training" 
to reduce the number of bits
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fwX BDT vs. hls4ml BDT
Comparison

• Lower latency
• Lower LUT, FF
• Higher BRAM (but 0.1% of avail.)

Setup
• Details in paper, same as possible
• Public datasets of e vs. γ
• ROC is same bec. use same BDT
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fwX BDT vs. hls4ml neural network
Setup

• Details not in paper
• Using 200 MHz clock here
• Chose NN architecture to match 

ROC performance of BDT

Comparison
• Lower latency
• Comparable LUT, FF
• Higher BRAM (but 0.3% of avail.)
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Nanosecond machine learning event classification with
boosted decision trees in FPGA for high energy physics

T.M. Hong�, B.T. Carlson, B.R. Eubanks, S.T. Racz, S.T. Roche,
J. Stelzer, and D.C. Stumpp

Department of Physics and Astronomy
University of Pittsburgh

May 17, 2021

Abstract

We present a novel implementation of classification using the machine learning / artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays
(FPGA). The firmware implementation of binary classification requiring 100 training trees
with a maximum depth of 4 using four input variables gives a latency value of about 10 ns,
independent of the clock speed from 100 to 320MHz in our setup. The low timing values are
achieved by restructuring the BDT layout and reconfiguring its parameters. The FPGA resource
utilization is also kept low at a range from 0.01% to 0.2% in our setup. A software package
called fwXmachina achieves this implementation. Our intended user is an expert in custom
electronics-based trigger systems in high energy physics experiments or anyone that needs
decisions at the lowest latency values for real-time event classification. Two problems from high
energy physics are considered, in the separation of electrons vs. photons and in the selection of
vector boson fusion-produced Higgs bosons vs. the rejection of the multijet processes.

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Trigger
algorithms, and Trigger concepts and systems (hardware and software).

�Corresponding author, tmhong@pitt.edu
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A. Rodic (did the comparison with hls4ml's neural network)

Paper authors

New member
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Nanosecond ML event classification with BDT in FPGA for HEP

Table 1: Benchmark configuration and the resulting FPGA cost. Four groups of information are given. The
top-most group defines the FPGA setup and the clock choice. The second group defines the ML training
setup used for the electron-photon problem. The third group defines the Nanosecond Optimization, The final
group gives the results of the FPGA cost.

Parameter Value Comments
FPGA setup

Chip family Xilinx Virtex Ultrascale+
Chip model xcvu9p-flga2104-2L-e
Vivado version 2019.2.1
Synthesis type C-Synthesis
HLS or RTL HLS
HLS interface pragma None
Clock speed 320MHz Clock period is 3.125 ns

ML training configuration
ML training method Boosted decision tree Binary classification
Boost method Adaptive AdaBoost with yes/no leaf
No. of event types to classify 2 Signal vs. background
No. of input variables 4
No. of trees used for training 100
Maximum tree depth 4

Nanosecond Optimization configuration
B�� E����� type B�� S���� B�� E����� (BSBE)
No. of bits for input variables 8 bits for each
No. of bits for cut thresholds 8 bits for each
No. of bits for BDT output score 8 bits
No. of trees after merging 10 T��� M����� via ordered list
No. of final trees 10, none removed T��� R������ by truncation
No. of bins 26132 C�� E����� not used

FPGA cost
Latency 3 clock ticks 9.375 ns
Interval 1 clock tick 3.125 ns
Look up tables 1903 out of 1182240 < 0.2% of available
Flip flops 138 out of 2364480 < 0.01% of available
Block RAM 8 out of 4320 < 0.2% of available
Ultra RAM 0 out of 960 -
Digital signal processors 0 out of 6840 -

20

Nanosecond ML event classification with BDT in FPGA for HEP
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Figure 24: Latency result vs. clock speed for the benchmark configuration. The number of clock ticks is
given on the H-axis on the left hand side and the time elapsed in nanoseconds on the right hand side. The
Vivado HLS version 2018.2 is used for the data points except for the point for 2019.2.1, which noted next to
the symbol. The two data points at 320MHz show the di�erence between Vivado HLS versions for the same
clock speed.

The test bench for this project is generated in c++ along with the design itself and can be used to
evaluate the design on an algorithmic level. Using C/RTL co-simulation, the synthesized can be
evaluated with the same test bench. fwX generates a unique test bench for the user with every design
that it produces, so the user may validate their own design.

We considered over 200 di�erent configurations each corresponding to a firmware simulated
“core,” which is the RTL-level output of HLS C-synthesis. For each core 105 input data vectors are
fed into the test bench.

The output of the HLS co-simulation and software simulation are compared. We note that
the wrapper code converts the test vectors from floating point values to the corresponding bit
integer values. In all of the tests we saw no di�erence between the firmware output and the
bit-integer-simulated software output.

E Study of the number of jet pairs for VBF Higgs vs. mult�et
The classifier is trained on the highest <9 9 reconstructed jet pair with VBF � ! invisible as signal
and the multÚet process as background. For testing the training step, the final BDT score for the
event is the highest BDT score from all possible jet pairs in the event.

The number of jets and jet pairs � per event, and � depends on two external factors. The first
factor is the set of user-defined criteria, such as the minimum ?T threshold for each jet in the event
or a minimum <9 9 to be considered. Furthermore, we assume that the list of jet pairs can be sorted

52

• 10 ns is independent of 
clock from 100-320 MHz
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Nanosecond ML event classification with BDT in FPGA for HEP

highest mj j pair from each VBF H ! invisible event; this is assumed to be the correctly identified
VBF jet pair in those events. For the background, every possible jet pairing is trained on, as none of
these are “VBF jets.” For example, if a background event has three jets ( j1, j2, and j3), then the
three combinations j1 j2, j1 j3, and j2 j3 are all considered as background pairs in the training.

For each dijet pair, j1 is the higher pT jet and j2 is the other jet. Cylindrical ⌘-� coordinates are
used with pseudorapidity ⌘ and azimuthal angle �. The ranges of the angles are �4.9 < ⌘ < 4.9 and
�⇡ < � < ⇡, respectively. These define the input variables listed in table 9. The distributions are
shown in figure 19.

Table 9: List of input variables for the classification of the VBF Higgs boson vs. multijet process. Also given
are the ATLAS-inspired cut-based o�ine thresholds for Run 2 [64] and HL-LHC [65]. For Run-2, di�erences
arise with respect to the document when the mj j threshold is quoted as 1100GeV for L1 MJJ-500-NFF; we
use the > 99% o�ine e�ciency point, which is achieved around mj j > 1300GeV. for others the o�ine
thresholds are used. For HL-LHC, the single-level scheme values are quoted. The performance of the
cut-based approach using these values is compared the performance to the BDT result in figure 16. The
non-optimized (non-opt) configuration includes the five variables from the optimized configuration.

Input
variable

Description ATLAS Run-2 o�ine
cut [64], see caption

ATLAS HL-LHC o�ine
cut [65], see caption

Used in BDT

pT1 Leading jet pT > 90GeV > 75GeV -
pT2 Subleading jet pT > 80GeV > 75GeV Optimized
pT12 Sum pT1 + pT2 - - Optimized
|⌘1 | Leading jet ⌘ < 3.2 - -
|⌘2 | Subleading jet ⌘ < 4.9 - -Œ

⌘ Product ⌘1 · ⌘2 - - Optimized
|�⌘ | Separation in |⌘2 � ⌘1 | > 4.0 > 2.5 -
|��| Separation in |�2 � �1 | < 2.0 < 2.5 non-opt
|�R|

p
(�⌘)2 + (��)2 - - non-opt

mj j Dijet invariant mass > 1300GeV - Optimized
pj j
T Dijet pT - - Optimized

The BDT was trained with 100 trees each with a maximum depth of 4. Given the target operating
point at very low background acceptance, the background training tree was weighted by a factor of
105 to strongly encourage the classifier to minimize erroneous background acceptance. The signal
and background events were evenly split between training and testing sets. The BDT setup uses the
AdaBoost metric in TMVA with node purity as the output score.

C Details of the Nanosecond Optimization
Details of the binning algorithms as well as for the four latter steps of the Nanosecond Optimization
are described.

40
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Nanosecond ML event classification with BDT in FPGA for HEP
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Figure 6: Example layout of the E��������� P�������� that implements the BDT. The dataflow is left to
right with an #-bit integer G as input. Look up table (LUTC ) corresponds to decision tree C = 0, . . . ,) � 1; a
B�� E����� obtains the bin index 1E for one input variable value GE for variables E = 0, . . . ,+ �1. The S����
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13

Nanosecond ML event classification with BDT in FPGA for HEP

ML Training
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Custom
Firmware

External
SW for ML
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External 
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Figure 1: Workflow diagram for the fwXmachina package. The flowchart reads from left to right following
the thick arrows that connect the three main stages: ML training with the software (SW) interface, nanosecond
optimization, and firmware (FW) design. The interactions of fwX with external inputs (shown in flat white
figures) and external software packages (shown in gray cubes) are shown by thin vertical arrows. Nanosecond
Optimization is shown in more detail later in figure 3. The information flow for the user input is diagrammed
in the appendix (figure 23).

evaluated by considering the receiver operating characteristics (ROC) curves. The “FPGA cost” is
evaluated by the timing values and the resource utilization using Xilinx Vivado HLS. At this point, the
user chooses the working point that best suits the problem at hand. The performance considerations
(center circle in figure 1) and user input (diamond) is part of Nanosecond Optimization.

The third stage is firmware design. The inputs to Vivado are created [46, 47]. The inputs are a
combination of HLS and hardware description language (HDL). We target VHDL, a type of HDL,
for the output. The output, after synthesizing with Vivado, is the firmware in bitstream format to be
programmed on to the FPGA. After the programming, the FPGA is prepared to repeatedly execute
the algorithm on incoming unclassified events that are fed to it.

2 ML training
The ML training stage is executed by external packages as described in the previous section.

For the problem of binary classification of signal vs. background in a supervised learning
environment, a given ML method needs to be trained using samples containing events labeled as
“signal” or “background.” The training process starts with an initial set of parameters for the chosen
ML architecture, such as the decision tree structure for BDT and layer structure for neural network,
that is iteratively improved by a feedback loop consisting of a metric.

We emphasize that in the level-1 system for high energy physics, the training step is typically
done before the real-time evaluation. The latency requirement of the level-1 system is not a constraint
for the training step that uses training samples that are prepared beforehand. In contrast, for the
operating conditions present incoming data at high speeds, e.g., 40MHz at the LHC, the algorithms

5

• Each variable is processed 
independently of each other
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Nanosecond ML event classification with BDT in FPGA for HEP
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Figure 7: Example gate-level diagram of the B�� S���� B�� E�����. The dataflow is left to right with an
#-bit integer G as input. The G is binned in ! binary layers via bit-shift, comparator, and AND gates. The
dotted elements are not present for the example considered, but are drawn for completeness. The comparator
constants that correspond to each layer (✓ = 1, . . . , !) are denoted as U, . . . , X, respectively. There are ⌫

copies of AND corresponding to the ⌫ bins. Since only one AND gate (say, at position 1) uniquely returns
in1 = 1 while all others return 0, the list of in is converted in a LUT via an active array to out = 1.
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Figure 8: Example diagram of the L��� U� B�� E�����. The dataflow is left to right with an #-bit integer G
as input. The G is binned by comparison with the threshold values U, . . . W in the comparators gates. The
NAND gate of all of the XOR results gives the result of the last ⌫ � 1 bin. Thick arrows indicate the latency
incurred by accessing memory, either LUT or BRAM.

16• Look up thresholds in memory, 
compare

• Bit shift to localize data
• This is fast

• Use combinatoric logic as much as possible without 
multiplication. No explicit clocked operations.
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Figure 23: Diagrams of the test bench. The top setup validates the BDT output score $ with respect to
software simulation for a large number of test vectors and configurations. The bottom setup verifies the
co-simulation results against the physical FPGA. The “core” in the diagram is the output of Vivado HLS. In
both setups, the HLS co-simulation that is being tested is the same; two instances are drawn for figure clarity.
The dark blue boxes are part of Nanosecond Optimization (figure 1), but is included here for completeness.
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• No difference seen 
wrt software 
implementation
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All info at
https://fwx.pitt.edu

git repo

data set

doxygen

https://fwx.pitt.edu
https://fwx.pitt.edu
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Table 13: Comparison of the fwXmachina result (from table 1) and one from hls4ml/Conifer using the
out-of-the-box code [69]. The test uses the benchmark configuration listed in table 1, i.e., the same BDT
configuration from TMVA trained on the same training samples. The first two groups of rows show the
parameters for ML training, FPGA, and firmware. The bottom group of rows shows the FPGA cost. See the
text for the details regarding the choice of ap_ufixedh10,5i, as well as the results using other choices for the
precision.

Parameter fwXmachina hls4ml/Conifer Comments
ML training setup

Training software TMVA TMVA same
Physics problem electron vs. photon electron vs. photon same
Training samples from ref. [56] from ref. [56] same
No. of event classes 2 2 same
No. of training trees 100 100 same
Max. depth 4 4 same
No. of input variables 4 4 See figure 18
Other TMVA parameters TMVA defaults TMVA defaults same
Nanosec. Optimization Flattened & merged to 10

final trees, without Tree
Remover or Cut Eraser

N/A Unique to fwX

FPGA and firmware setup
Chip family Xilinx Virtex Ultrascale+ Xilinx Virtex Ultrascale+ same
Chip model xcvu9p-flga2104-2L-e xcvu9p-flga2104-2L-e same
Vivado HLS version 2019.2 2019.2 same
Clock speed, period 320MHz, 3.125 ns 320MHz, 3.125 ns same
Precision ap_inth8i ap_ufixedh10,5i See text
Bin Engine BSBE N/A Unique to fwX

FPGA cost
Actual timing values and resource usage by RTL synthesis and implementation

Latency 3 clock ticks, 9.375 ns 15 clock ticks, 46.875 ns -
Interval 1 clock ticks, 3.125 ns 1 clock tick, 3.125 ns same
LUT 717, 0.06% of total 3834, 0.3% of total -
FF 147, < 0.01% of total 1966, < 0.1% of total -
BRAM 18k 5.5, 0.1% of total 0 -
URAM 0 0 same
DSP 2, 0.03% of total 0 -

59 29

vs. hls4ml's BDT


