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Introduction
• Indirect CP violation is defined as


                     


• It arises from the kaon mixing via the diagrams 


    as the mass eigenstates are admixtures of CP eigenstates


• It is used to constrain the CKM matrix and unitarity triangle


• Experimentally:  (PDG 2020)

ϵK ≡
⟨(ππ)I=0 |T |KL⟩
⟨(ππ)I=0 |T |KS⟩

|ϵK |exp = (2.228 ± 0.011) × 10−3



Introduction
• Can be written as 


                


    where  and 

ϵK ≡ eiϕϵ sin ϕϵ
1
2

arg ( −M12

Γ12 )
ϕϵ = arctan(2ΔMK /ΔΓK) M12 = − ⟨K0 |ℒΔS=2

f=3 | K̄0⟩/(2ΔMK)



Introduction
• Can be written as 


                


    where  and 


• At scales around , effective  Lagrangian is given by


    


   where and  

ϵK ≡ eiϕϵ sin ϕϵ
1
2

arg ( −M12

Γ12 )
ϕϵ = arctan(2ΔMK /ΔΓK) M12 = − ⟨K0 |ℒΔS=2

f=3 | K̄0⟩/(2ΔMK)

μ = 2 GeV |ΔS | = 2

ℒ|ΔS|=2
f=3 = −
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4π2 [λ2
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S2 (μ) + λ2
t C′￼′￼tt

S2(μ) + λuλtC′￼′￼ut
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EFTs and Matching



Effective field theory and matching
• EFT Lagrangian:                               


• Define renormalized Wilson Coefficients: 


• RGEs determine the scale-dependence of renormalized Wilson Coefficients in terms 
of ADM and evolution matrix


     


• The initial conditions for  are found by requiring


                   


• At LO this is just 

ℒ = ∑i C(0)
i 𝒪(0)

i

C(0)
i = ZijCj

dCi

d log(μ)
= Cj(μ)γji → Ci(μ) = Cj(μ0)Uji(μ0, μ)

Ci(μ)

𝒜full(μmatch) = 𝒜EFT(μmatch)

𝒜(0)
i = C(0)

i



Evanescent operators
• Use dimensional regularization 


•  is not well defined


• Introduce evanescent operators which vanish as 


   


   


• Results in scheme dependent Wilson coefficient

d = 4 − 2ϵ

γ5

d → 4

E(1)
S2 = (sα

Lγμ1
γμ2

γμ3
dα

L) ⊗ (sβ
Lγμ1γμ2γμ3dβ

L) − (16 − a11ϵ − 4ϵ2)QS2

E(2)
S2 = (sα

Lγμ1
γμ2

γμ3
γμ4

γμ5
dα

L) ⊗ (sβ
Lγμ1γμ2γμ3γμ4γμ5dβ

L) − (256 − a21ϵ− 108816
325 ϵ2)QS2



Factorization of evolution matrix
• QCD amplitude factorizes into two separately scheme and scale independent pieces


   


                                                                   


                                 perturbative                     non-perturbative


• For QED amplitude  is just a number, hence it is not possible to factorise the amplitude 
in such way


• As QED ADM is scheme independent, dependence must cancel against the matrix element:


         

Cij(μ)U(μ, μ0)⟨QS2⟩(μ0) = [Cij(μ)J−1(μ)U(0)(μ)] [(U(0)(μ0))−1J(μ0)⟨QS2⟩(μ0)]

ηijS(xi, xj) B̂K

J(μ)

⟨QS2⟩ ≡ [1 +
α
4π ( 1

9
a11 −

4
3

log
μt

μhad ) + …]⟨QS2⟩(0)



Results



Calculation

•  two-loop diagrams - independently cross-checked


• Renormalized by counterterm insertions and by replacing bare parameters with 
renormalised ones in addition to expanding in 


• UV and IR divergences cancel in the matching


• Obtain the Wilson coefficient at matching scale and run to 2 GeV


        

𝒪(30,000)

α



EW renormalization schemes
• Study residual theory uncertainty w.r.t. the higher order ew corrections.


• Three schemes: , on-shell and hybrid


• For  scheme:


    


• matching scale dependence is reduced from


    at LO to  at NLO

MS

MS

Ĉtt
S2 =

α2(μ)

8m2
W(μ)(sMS

w (μ))4 Ctt
S2(μ)⟨QS2⟩(μ)

±12 % ±0.4 %



On-shell scheme
• Weak mixing angle defined in terms of physical boson masses: 


, , 


• NLO corrections are large, indicating slow convergence of the perturbation series

sin2 θOS
w = 1 − M2

W /M2
Z

Ĉtt
S2 =

α2(μ)

8M2
W(sOS

w )4 Ctt
S2(μ)⟨QS2⟩(μ) Ĉtt

S2 =
α(μ)GF

4 2(sOS
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S2(μ)⟨QS2⟩(μ) Ĉtt
S2 =

G2
FM2
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4π2
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Hybrid scheme
•   is defined in the  scheme, while  is defined in the on-shell scheme. 


• GF norm. shows better perturbative convergence than conventionally used GF2


• Matching scale dependence  at NLO

sMS
w (μ) MS MW

±0.4 %



QCD+EW
• Resummation of QED logs:   and 


• Two-loop ADM:    


• Small scheme dependence: 

ααn
s logn+1(μt /μhad) ααn

s logn(μt /μhad)

γS2 =
αs

π
+ (4Nf

9
− 7) α2

s

16π2
+

α
3π

−
148
9

ααs

16π2

C′￼′￼tt
S2(2 GeV) = (3.90 − 0.0003a11) × 10−8



Results

• Central values of all three normalizations perfectly coincide


• Need the matrix element to cancel scheme dependence


• Temp. solution: choose GF2 norm. and multiply  by , with 



          


          

ηtt (1 − Δtt)
Δtt = 0.01 ± 0.004

|ϵK | = 2.15(6)pert(7)non−pert(15)param × 10−3

|ϵK |exp = (2.228 ± 0.011) × 10−3



Conclusions
• Presented NLO EW corrections to top-quark contributions to 


• Discussed scheme-dependence and the need for non-perturbative ME including 
QED


• See −1.0% shift in central value of Wilson coefficient


• Upcoming three-loop QCD top contributions, two-loop EW charm contributions, two-
loop matching for  and possible updated lattice calculations will give more 
accurate prediction of 

ϵK

B̂K
ϵK


