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Why this talk ?

Many, if not most of us, heavily rely on numerical codes to

perform calculations.

Both data-intensive and computation-intensive
applications will be forced to face an epocal major shift in

the computation paradigm, which indeed started several

years ago.
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Why this talk ?

“CRUCIAL PROBLEMS that we can only hope to address
computationally REQUIRE US TO DELIVER EFFECTIVE
COMPUTING POWER ORDERS-OF-MAGNITUDE
GREATER THAN WE CAN DEPLOY TODAY.”

DOE’s Office of Science, 2012
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Why Exa-Scale ?

“EXA-scale” is the necessary
upscale step that HPC needs

to achieve in the next (few) years. |

Basically, it is defined as the frontier of

a sustained performance around
10*2 flop/s.

There are profound consequences on the way
we design, write and optimize scientific codes
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“Exa-Scale” challenges: performance
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“Exa-Scale” challenges: performance
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“Exa-Scale” challenges

Exascale is the achievement of a sustained
performance around 10'2 Pflops.

It is a relative term pointing to 1000-fold better
capability than that representative of the petascale.

M Is this achievement dependent only on improvements
in hardware technology ?

i.e: shall our codes plug-in as they are, and just run
faster, saturating a exa-scale machine ?
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Flash back: why there is no more “free-lunch” ?
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Flash back: why there is no more “free-lunch” ?

Dennard’s scaling (MOSFET)

Manifacturing cost/area is - Voltage, Capacitance, Current
costant while the transistors’ scale with A as 1/A

dimension halves every 1-2 - Transistor power scales as
years 1/\?

-> The number of transistors -> Power density remains
doubles in a CPU every 1-2 constant
years

PxC-V%-f
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Flash back: why there is no more “free-lunch” ?
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Flash back: why there is no more “free-lunch” ?
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Back to the future

Message I

Many-cores CPUs are here to stay

sy L
iMemoty Controller * ! !

- Concurrency-based model
programming (which is
different than both parallel
and /LP): means work
subdivision in as many
indipendent task as possibile

- Specialized, heterogeneous
cores

- Multiple memory hierarchies
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“Exa-Scale” challenges: energy consumption
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“Exa-Scale” challenges: energy consumption

What dominates the energy consumption in computation ?

Operation pJoules
64bits FP 28nm CMOS (12
32bits integer operations on 28nm CMOS 3
64Dbits FP single-issue in-order core 200
64Dbits multiple-issue out-of-order core 1000
reading 32bits instruction from 32KB cache 20

reading 64bits operands from DRAM
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“Exa-Scale” challenges

Message lli

Moving memory is among most expensive

operations,
x100 or more than a 64bits FP instruction.

By 2018 FP will cost 10 pJ on 11nm chips,
while reading from DRAM will still cost >1000pJ.

A 10 Tflop chip will require 100W.
It shall take 2000W of power to supply
memory bandwidth for a modest Bytes/FP of 0.2
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“Exa-Scale” challenges: memory capacity

We can engineer far more floating point capability onto a chip than
can reasonably be used by an application.

Data movement presents the most daunting engineering and
computer architecture challenge.
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“Exa-Scale” challenges: memory capacity

..unless more efficient memory technologies are developed
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“Exa-Secale” challenges

Memory Capacity is critical to applications.

» weak scaling (enlarge your problem, stay efficient)

* in-memory checkpoints

* message logging/replay for resilience

e algorithms that buy performance by using data
structures that may not be minimal in their memory
footprint.
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Memory- vs Computation - intensity
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“Exa-Scale” challenges

The machines at the top of the TOP500 do not have sufficient memory to match
historical requirements of 1B/Flop, and the situation is getting worse.

This is a big change: it places the burden increasingly on strong-scaling of
applications for performance, rather than on weak-scaling like in tera-scale era.
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“Exa-Scale” challenges

Memory power consumption & Bw X Length? / Area

AMD NVIDIA AMD
Radeon R9 GeForce Radeon R9

290X GTX 980 Ti Fury X
Total Capacity 4 GB 6 GB 4 GB
Bandwidth Per Pin 5 Gb/s 7 Gb/s 1 Gb/s
Number of 16 12 4
Chipsl/Stacks
Bandwidth Per 20 GB/s 28 GB/s 128 GB/s
Chipl/Stack
Effective Bus 512-bit 384-bit 4096-bit
Width / RN
Total Bandwidth 320 GB/s 336 GB/s [ 512 GB/s \
Estimated DRAM 30w 31.5W 14 .6W '
Power \ /
Consumption N oo

Feeding 1B / flop for 10*® flop/s

Code migration into EXA-Scale era

~28 MW

Samsung's 4- Theoretical
Stack HBMZ2 GDDR5X 256-
based on 8 bit sub-
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Some Exa-Scale facts : architectural view

Tools, language extensions, and APls
for productive programming

Heterogeneous processor for s -8 e Non-volatile memory for
reliable, power-efficient computing g e , high capacity

Network interfaces, optics N 5 Processing-in-memory for
and routers for efficient L improved power & performance
data movement

Stacked memory for high
memory bandwidth
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Some Exa-Scale facts : computation/data view

Charting the Landscape
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Some Exa-Scale facts

- Cores need to be as simple as possible

- Code optimization becomes fundamental
POWER WALL ) - Concurrency programming —> software design
- Cores’ specialization must be exploited
/ - Billion-way parallelism

v/

- Memory power wall + spatial constraints + cost
constraints = very small memory with high bw
2 - Extreme multi-level NUMA hierarchy:
IVIEIVIORY: \_/\_/}\Ll_,> L1 -> L2 -> L3 -> local RAM (shared) -> non-local

e

RAM -> distant RAM
- Possible PGAS paradigm
- Data locality by design is mandatory

- Concurrency programming + careful
ILP WALL ) threadization, do not rely on automatic

pipelining
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Some consequences for developers

( TASK

DECOMPOSITION
-+

SCHEDULING

MEMORY MIASSIVE+
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Code migration into EXA-Scale era ASTROTS meeting 25/9 /2017



Some consequences for developers

Adaptive response

bal Exploitation of
to unbafance \ TASK specialized cores
Concurrency among? DECOMPOSITION CPUs, GPUs, FPGA,..

independent ops 5

( | SCHEDULING )

Multi-physi Iculati *
ulti-physics calculations Strong & Weak
on same bytes

\ 1SCALABILITY R | ﬁ

More efficient
cache us
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e

& HIERARCHY

e E
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Re-designing GADGET

global time-step

( optional )
PHYSICS
DOMAIN
decomp.
Large-Scale Neighbour Neighbour Many
- fmdmg . Y v

* Extremely complex code, many different algorithms
(long-distance + local physical processes)

* Rigidly procedural design

Tree
construction
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Re-designing GADGET

In light of all previous considerations, undoubtedly GADGET may present some
issues

» Relies on a “monolithic” workflow instead of being split-up in smallest
autonomous “tasks”: a relatively low number (~103) of MPI threads execute the
same work-flow on a fraction of the system
(OpenMP threads possibly execute concurrently the same task)

» Adaptively balancing the workload is quite difficult on million-threads
architectures. It might still achieve weak scaling, with increasing parallel
inefficiency, but can hardly achieve strong scaling

» It relies on frequent all-to-all communication / synchronization cycles
» It is unaware of heterogeneous memory hierarchy
» Communications are “blocking”

» Data structures are not intrinsically designed to guarantee (1) cache-efficiency and
(2) vectorization-efficiency
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Re-designing PINOCCHIO

Max N

single MPI | .
tasks ' G

N2 xn

T+ 5 % 1 % AW, h YN
\
Z\

(NSNS NNREN

N
P Calculates 3D evolution from initial distribution and
velocities

P Intensive use of FFT(W), with 1D spatial decomposition
P N calculating task at most
P memory limitation when N becomes really large
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Re-designing PINOCCHIO
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Plane is used with some
special symmetries;
must have it all in mem

Subsequent generated
pseudo random-nums,
from corners inwards

Initial power spectrum has physical properties and symmetries;
to exploit them, it’s built from a random field that must be entirely

resident to all MPI tasks, posing severe memory limitations, since

we aim to N = several 104 or more
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2D-3D FFT
decomposition

PINOCCHIO
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