Code Migration into EXA-Scale Era

Luca Tornatore @ INAF
With

D. Goz, G. Murante, G. Taffoni, S. Borgani

ASTROTS meeting – SISSA Sept. 2017

Why this talk?

Many, if not most of us, heavily rely on numerical codes to perform calculations.

Both data-intensive and computation-intensive applications will be forced to face an epocal major shift in the computation paradigm, which indeed started several years ago.

Why this talk?

"CRUCIAL PROBLEMS that we can only hope to address computationally REQUIRE US TO DELIVER EFFECTIVE COMPUTING POWER ORDERS-OF-MAGNITUDE GREATER THAN WE CAN DEPLOY TODAY."

DOE's Office of Science, 2012

Why Exa-Scale?

"EXA-scale" is the necessary upscale step that HPC needs to achieve in the next (few) years.

Basically, it is defined as the frontier of a **sustained** performance around **10**¹⁸ **flop/s**.

There are profound consequences on the way we design, write and optimize scientific codes

"Exa-Scale" challenges: performance

"Exa-Scale" challenges

Message I

Exascale is the achievement of a sustained performance around 10¹⁸ Pflops.

It is a **relative term** pointing to **1000-fold better capability** than that representative of the *petascale*.

Question

Is this achievement dependent only on improvements in **hardware technology**?

i.e: shall **our codes** plug-in as they are, and just run faster, saturating a exa-scale machine?

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

Moore's law	Dennard's scaling (MOSFET)
Manifacturing cost/area is costant while the transistors' dimension halves every 1-2 years	- Voltage, Capacitance, Current scale with λ as $1/\lambda$ - Transistor power scales as $1/\lambda^2$
→ The number of transistors doubles in a CPU every 1-2 years	→ Power density remains constant

$$P \propto C \cdot V^2 \cdot f$$

Back to the future

Message II

Many-cores CPUs are here to stay

- Concurrency-based model programming (which is different than both parallel and ILP): means work subdivision in as many indipendent task as possibile
- Specialized, heterogeneous cores
- Multiple memory hierarchies

"Exa-Scale" challenges: energy consumption

Sunway performs for some apps at ≈10 Pflop/s consuming ≈18MW.

Simply rescaling to Eflop/s, it would consume ≈1.8GW.

The exa-scale goal is to reach Eflop/s at 20MW of electric power, i.e. 50 Gflops/W

Rule of thumb: 1MW = \$1M / yr

"Exa-Scale" challenges: energy consumption

What dominates the energy consumption in computation?

Operation	pJoules
64bits FP 28nm CMOS	12
32bits integer operations on 28nm CMOS	3
64bits FP single-issue in-order core	200
64bits multiple-issue out-of-order core	1000
reading 32bits instruction from 32KB cache	20
reading 64bits operands from DRAM	2000

"Exa-Scale" challenges

Message III

Moving memory is among most expensive operations,

x100 or more than a 64bits FP instruction.

By 2018 FP will cost **10 pJ on 11nm chips**, while reading from DRAM will still cost **>1000pJ**.

A **10 Tflop** chip will require **100W**. It shall take **2000W** of power to supply **memory bandwidth** for a modest **Bytes/FP of 0.2**

"Exa-Scale" challenges: memory capacity

We can engineer far more floating point capability onto a chip than can reasonably be used by an application.

Data movement presents the most daunting engineering and computer architecture challenge.

"Exa-Scale" challenges: memory capacity

..unless more efficient memory technologies are developed

"Exa-Scale" challenges

Message IV

Memory Capacity is critical to applications.

- weak scaling (enlarge your problem, stay efficient)
- in-memory checkpoints
- message logging/replay for resilience
- algorithms that buy performance by using data structures that may not be minimal in their memory footprint.

Memory- vs Computation - intensity

"Exa-Scale" challenges

The machines at the top of the TOP500 do not have sufficient memory to match historical requirements of 1B/Flop, and the situation is getting worse.

This is a big change: it places the burden increasingly on **strong-scaling** of applications for performance, rather than on **weak-scaling** like in tera-scale era.

"Exa-Scale" challenges

Memory power consumption ∝ Bw × Length² / Area

	AMD Radeon R9 290X	NVIDIA GeForce GTX 980 Ti	AMD Radeon R9 Fury X	Samsung's 4- Stack HBM2 based on 8 Gb DRAMs	Theoretical GDDR5X 256- bit sub- system
Total Capacity	4 GB	6 GB	4 GB	16 GB	8 GB
Bandwidth Per Pin	5 Gb/s	7 Gb/s	1 Gb/s	2 Gb/s	10 Gb/s
Number of Chips/Stacks	16	12	4	4	8
Bandwidth Per Chip/Stack	20 GB/s	28 GB/s	128 GB/s	256 GB/s	40 GB/s
Effective Bus Width	512-bit	384-bit	4096-bit	4096-bit	256-bit
Total Bandwidth	320 GB/s	336 GB/s	512 GB/s	1 TB/s	320 GB/s
Estimated DRAM Power Consumption	30W	31.5W	14.6W	n/a	20W

Feeding 1B / flop for 10¹⁸ flop/s

~28 MW

~60 MW

Some Exa-Scale facts: architectural view

Some Exa-Scale facts: computation/data view

Charting the Landscape

By far, no more a Von Neumann machine...

Some Exa-Scale facts

MEMORY WALL

- Cores need to be as simple as possible
- Code optimization becomes fundamental
- Concurrency programming → software design
- Cores' **specialization** must be exploited
- Billion-way parallelism
- Memory power wall + spatial constraints + cost constraints → very small memory with high bw
- Extreme multi-level NUMA hierarchy:
 L1 -> L2 -> L3 -> local RAM (shared) -> non-local
 RAM -> distant RAM
- Possible PGAS paradigm
- Data locality by design is mandatory

ILP WALL

 Concurrency programming + careful threadization, do not rely on automatic pipelining

Some consequences for developers

Some consequences for developers

Code migration into EXA-Scale era

Re-designing GADGET

- Extremely complex code, many different algorithms (long-distance + local physical processes)
- Rigidly procedural design

Re-designing GADGET

In light of all previous considerations, undoubtedly **GADGET may present some** issues

- ▶ Relies on a "monolithic" workflow instead of being split-up in smallest autonomous "tasks": a relatively low number (~10³) of MPI threads execute the same work-flow on a fraction of the system (OpenMP threads possibly execute concurrently the same task)
- ▶ Adaptively balancing the workload is quite difficult on million-threads architectures. It might still achieve weak scaling, with increasing parallel inefficiency, but can hardly achieve strong scaling
- ▶ It relies on **frequent all-to-all communication / synchronization** cycles
- ▶ It is unaware of heterogeneous memory hierarchy
- Communications are "blocking"
- ➤ Data structures are not intrinsically designed to guarantee (1) cache-efficiency and (2) vectorization-efficiency

Re-designing PINOCCHIO

- Calculates 3D evolution from initial distribution and velocities
- Intensive use of FFT(W), with 1D spatial decomposition
 - N calculating task at most
 - memory limitation when N becomes really large

Re-designing PINOCCHIO

Subsequent generated pseudo random-nums, from corners inwards

Plane is used with some special symmetries; must have it all in mem

Initial power spectrum has physical properties and symmetries; to exploit them, it's built from a random field that must be entirely resident to all MPI tasks, posing **severe memory limitations**, since we aim to $N \rightarrow$ several 10^4 or more

Re-designing PINOCCHIO

- ▶ 3D decomposition for FFT, instead of 1D
- completely re-designed algorithm to generate power-spectrum
 - ✓ has same symmetries and properties
 - ✓ each MPI task must have only its portion of the initial random field
- ▶ [ongoing] detailed analysis of memory patterns and access