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• All the stars rotate! 

Royer 2009 

I - Why is it important the rotation in the stellar physics?

Hot Stars Cool Stars

Examples:
➢ Sun, ⊙
- Spectral Type G2V
- 𝑇𝑒𝑓𝑓 = 5770 K

- 𝑣𝑟𝑜𝑡 ∼ 2 km s−1

➢ Vega, 𝛼 Lir
- Spectral Type A0V
- 𝑇𝑒𝑓𝑓 = 9550 K

- 𝑣𝑟𝑜𝑡 sin 𝑖 = 25 ± 2 km s−1

- 𝑣𝑟𝑜𝑡 = 274 ± 14 km s−1

- 𝑖 = 4.54° ± 0.33°

➢ Altair, 𝛼 Aql
- Spectral Type A7IV-V
- 𝑇𝑒𝑓𝑓 = 7550 K

- 𝑣𝑟𝑜𝑡 sin 𝑖 = 217 km s−1

- 𝑣𝑟𝑜𝑡 = 273 ± 13 km s−1

- 𝑖 = 63.9° ± 1,7°

Sun

Vega

Altair

Projected Velocity

Density of stars



II – Effects of stellar rotation

Effects of rotation in stars (e.g. Kippenhahn & 
Weigert 2012) :

 Centrifugal force reduces the effective gravity
at any point, not at the poles; 

 Departure from spherical shape of surfaces; 

 Effective Temperature depends on colatitude (𝜃). 

 Rotation may induce same mixing processes. 

Ω

𝜃

𝒈
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𝒓
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The effect of rotation on stellar models has been studied for decades (Kippenhahn & Thomas 
1970 ; Endal & Sofia 1976; Zahn 1992; Heger et al. 2000; Maeder & Meynet 2000; Palacios et al. 
2003; Chieffi & Limongi 2013, etc…),  

but it remains as one of the most challenging and uncertain problems in stellar astrophysics.

Effective gravity
𝒈𝑒𝑓𝑓 = 𝐠 + 𝐚𝐜
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Effects of rotation in stars (e.g. Kippenhahn & 
Weigert 2012) :

 Centrifugal force reduces the effective gravity; 

 Departure from spherical shape of surfaces.
Since the centrifugal force is not, in general,     
parallel to the force of gravity, equipotential 
surfaces are no longer spheres; 

 Effective Temperature depends on colatitude (𝜃). 

 Rotation may induce same mixing processes. 

The effect of rotation on stellar models has been studied for decades (Kippenhahn & Thomas 
1970 ; Endal & Sofia 1976; Zahn 1992; Heger et al. 2000; Maeder & Meynet 2000; Palacios et al. 
2003; Chieffi & Limongi 2013, etc…),  

but it remains as one of the most challenging and uncertain problems in stellar astrophysics.

II – Effects of stellar rotation

Pole

Equator𝑅/𝑅𝑝𝑜𝑙

𝑅
/𝑅

𝑝
𝑜

𝑙

Ω𝑐𝑟𝑖𝑡 maximal angular velocity;

ω =
Ω

Ω𝑐𝑟𝑖𝑡
dimensionless “angular velocity”.



The Von Zeipel theorem (1924) is 

𝑭 𝜔, 𝜃 = −
𝐿

4𝜋 𝐺 𝑀
𝒈𝑒𝑓𝑓(𝜔, 𝜃)

Then, the effective surface temperature is

𝑇𝑒𝑓𝑓 𝜔, 𝜃 = −
𝐿

4𝜋 𝜎 𝐺 𝑀

1
4

𝑔𝑒𝑓𝑓 𝜔, 𝜃
1
4

𝜃 is the co-latitude.
𝜔 dimensionless “angular velocity”.
𝜎 is the Stefan-Boltzmann constant.

Effective Temperature

Courtesy of Girardi L.
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II - Von Zeipel Effect

 The rotation affect the surface temperature of the star because to the gravity darkening due 
to the Von Zeipel effect, that changes the flux distribution on the stellar surface due to 
temperature gradient.



• Updating equations

• Introducing the angular velocity

• Conservation of angular momentum 

Evolution tracks of rotating stars
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II – Implementing rotation in PARSEC
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II - Von Zeipel Effect a simple application

From Goudfrooij et al. (2011a)

Extended Main Sequence Turn-Off (eMSTO) in intermediate age cluster. 

From Brandt et al,. 2015

Different stellar population Different stellar rotation and inclination



Ω(r)

Meridional
Circulation

Ω(r1)

Ω(r2)

Ω r1 ≠ Ω(r2)

Effects of rotation in stars (e.g. Kippenhahn & 
Weigert 2012) :

 Centrifugal force reduces the effective gravity; 

 Departure from spherical shape of surfaces;

 Effective Temperature depends on colatitude (𝜃);

 Rotation may induce same mixing processes,
due to two main phenomena:
 The meridional circulation, caused by the 

departure from hydrodynamical and radiative 
equilibrium;

 The shear friction, caused by the differential 
angular velocity;

The effect of rotation on stellar models has been studied for decades (Kippenhahn & Thomas 
1970 ; Endal & Sofia 1976; Zahn 1992; Heger et al. 2000; Maeder & Meynet 2000; Palacios et al. 
2003; Chieffi & Limongi 2013, etc…),  

but it remains as one of the most challenging and uncertain problems in stellar astrophysics.

II – Effects of stellar rotation



II – Effects of the enhanced mixing in star evolution 

• Rotation significantly alter the evolution of stars :

I. Lifetimes, in particular the stars live longer;

II. Structure and surface abundances;

III. Evolutionary fates;
Evolutionary tracks (Brott et al. 2011)

Homogeneous Star

Hydrogen rich layer

Non-homogeneous Star

Mixed
Mixed

core

25 𝑀⊙

Hydrogen

Fast rotator
(very enhanced mixing)

Slow rotator

Ti
m

e

Zero Age Main Sequence
(ZAMS)

Homogeneous evolution takes
• More massive remnants
• Binary evolution without Roche lobe 

overflow (without common envelope)

100 𝑅⊙10 𝑅⊙

1 𝑅⊙

5 𝑅⊙



II – Effects of the enhanced mixing in star evolution 

• Rotation significantly alter the evolution of stars :

I. Lifetimes, in particular the stars live longer;

II. Structure and surface abundances;

III. Evolutionary fates;

Observational effect:

➢ The surface enhancement of N 
in MS stars (Mokiem et al. 
2006, 2007; Hunter et al. 2009; 
Langer 2012); 

Momentum Transport:

in systems in which there is 
angular momentum exchange, 
e.g. binaries or star-disk systems  
(or star-planets systems)

(Langer 2012)



Actual Goals
 Complete the implementation of rotation

features in PARSEC; 

 Calibrate the parameters;

 Reproduce the N enrichment;

Future
Possible application of the code in the study of:

 Mixing enhancement in rotating star at different metallicities (Z);

 Star structure, with astro-sysmology (G. Mirouh);

 Evolution of Binaries systems;

 Homogeneous evolution;

 Clusters turn off;

 Etc ….

III – Goals and future perspectives



Thank you for your attention



From Chieffi & Limongi 2013
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II – Implementing rotation in PARSEC

Comparing results with a different star evolution code, e.g. FRANEC



Effects of rotation in stars (e.g. Kippenhahn & 
Weigert 2012) :

 Centrifugal force reduces the effective gravity; 

 Departure from spherical shape of surfaces;

 Effective Temperature depends on colatitude (𝜃). 
Because the radiative flux varies with the local
effective gravity (the Von Zeipel effect, 1924), 
the radiative flux is not constant on an    
equipotential surface; 

 Rotation may induce same mixing processes. 

The effect of rotation on stellar models has been studied for decades (Kippenhahn & Thomas 
1970 ; Endal & Sofia 1976; Zahn 1992; Heger et al. 2000; Maeder & Meynet 2000; Palacios et al. 
2003; Chieffi & Limongi 2013, etc…),  

but it remains as one of the most challenging and uncertain problems in stellar astrophysics.

II – Effects of stellar rotation

Effective Temperature
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II - Shape of the star

Pole

Equator

ω
𝑅𝑒𝑞

𝑅𝑝𝑜𝑙

0.0 1.000

0.2 1.006

0.4 1.026

0.6 1.064

0.8 1.141

0.9 1.216

1.0 1.500

𝑅𝑝𝑜𝑙 is the polar radius of an isobar.

Ω𝑐𝑟𝑖𝑡 =
2

3

3

2 𝐺 𝑀𝑃

𝑅𝑝𝑜𝑙
3 is the critical angular velocity.

ω =
Ω

Ω𝑐𝑟𝑖𝑡
is the dimensionless “angular velocity”.

𝑅/𝑅𝑝𝑜𝑙

𝑅
/𝑅

𝑝
𝑜

𝑙

Equator

Pole

8 𝑀⊙

𝑅/𝑅⊙

𝑅
/𝑅

⊙

Solid body rotation
~ 90 % Ω𝑐𝑟𝑖𝑡

∼ 400 km/s 

III – Shape of the star



Transport of angular momentum (only diffusion) 
(Heger et al. 2000; Yoon & Langer 2005; Chieffi & 
Limongi 2013):

𝜌𝑟2
𝑑𝑟2Ω

𝑑𝑡
=

1

𝑟2

𝜕

𝜕𝑟
𝜌𝑟4 𝐷

𝜕Ω

𝜕𝑟

𝐷 = Dshear + Dm.c.

Transport of chemical species:

𝜌
𝑑𝑋𝑖

𝑑𝑡
=

1

𝑟2

𝜕

𝜕𝑟
𝜌𝑟4𝐷𝑖

𝜕Xi

𝜕𝑟

Ω(r)

Meridional
Circulation

Ω(r1)

Ω(r2)

Ω r1 ≠ Ω(r2)

To insert the mixing effects due to rotation we need to treat the transport of angular momentum;
Because in the general case the stars rotate in differential way.

II – Transport of angular momentum and mixing
Work in progress



II - Stellar Rotation in simulations

In principle rotation is a full 3D problem, but thanks to Kippenhahn & Thomas (1970), Endal & 
Sofia (1976), Zahn (1992) and Meynet & Maeder (1997) studies, under proper assumptions we 
can simulate the effect of rotation in 1D simulations. 
Those are:

1. Roche approximation;

2. Change the spherical stratification in a 

rotationally deformed stratification (isobars);

3.  Ω = 𝑐𝑜𝑛𝑠𝑡 along the isobars (internal “shellular” rotation law);

Tangenzial Diffusion >> Horizontal Diffusion 

𝐷ℎ ≫ 𝐷𝑣

Ω(r)

Ω(r1)

Ω(r2)

Ω(r3)

Ω(r4)

The final scheme is that the star has a shellular
structure in which the angular velocity is 
constant in each shell (isobars).

This scheme is actually used by
Kepler (Heger et al. 2000); STERN (Yoon & Langer 2005); Geneva code (Eggenberger 2008);  
RoSE (Potter 2012b); FRANEC (Chieffi 2013);  MESA (Paxton 2015); and now PARSEC.

II – Stellar rotation in simulations



Why it is important the rotation in the stellar 
physics?

 All the stars rotate! (Show the image)

 Rotation in stars significantly alter their evolution:

I. Lifetimes;

II. Structure and surface abundances;

III. Evolutionary fates;

 The rotation affect the surface temperature of the star because to 
the gravity darkening due to the Von Zeipel effect (show the image), 
that changes the flux distribution on the stellar surface, due to 
temperature gradient

 It is fundamental to study the momentum flows through the star, in 
particular in systems in which there is angular momentum exchange, 
e.g. binaries or star-disk systems  (or star-planets systems)



The effect of rotation on stellar models has been studied for decades (Kippenhahn & Thomas 1970 ; Endal & 

Sofia 1976; Zahn 1992; Heger et al. 2000; Maeder & Meynet 2000; Palacios et al. 2003; Chieffi & Limongi 2013, 

etc…),  

but it remains as one of the most challenging and uncertain problems in stellar astrophysics.

Rotation in stars significantly alter their evolution:

• Lifetimes;

• Surface abundances;

• Evolutionary fates;

Possible observational effects:

• Extendend main sequence turn-off (eMSTO) in intermediate 

age cluster (Brandt 2015);

• The surface enhancement of He and N in MS stars (Mokiem

et al. 2006, 2007; Hunter et al. 2009); 

• The peculiar chemical composition of some very metal-poor

stars (Limongi & Chieffi 2012); 

I – Introduction to Stellar Rotation



The effect of rotation on stellar models has been studied for decades (Kippenhahn & Thomas 1970 ; Endal & 

Sofia 1976; Zahn 1992; Heger et al. 2000; Maeder & Meynet 2000; Palacios et al. 2003; Chieffi & Limongi 2013),  

but it remains as one of the most challenging and uncertain problems in stellar astrophysics.

Rotation in stars significantly alter their evolution:

• Lifetimes;

• Surface abundances;

• Evolutionary fates;

Non-homogeneous vs. homogeneous evolution.

• More massive remnants

• Binary evolution without Roche lobe overflow 

(without common envelope)

I – Introduction to Stellar Rotation

The “quasi-chemically homogeneous 

evolution” (Brott et al. 2011).

Homogeneous Star

Hydrogen rich layer

Non-homogeneous Star

Mixed Mixed
core

25 𝑀⊙ 25 𝑀⊙

Homegeneous evolution might play a key role in 
questions as the progenitors of the long soft GRB’s and 
on the production of massive binary Black Holes whose 
merging produce detectable gravitational wave signals 
Meynet et al. 2017



II - Stellar Structure Equations

Continuity equation:
𝜕𝑟

𝜕𝑀
=

1

4𝜋 𝑟2 𝜌

Hydrostatic equilibrium equation:
𝜕𝑃

𝜕𝑀
= −

𝐺 𝑀

4𝜋 𝑟4

Energy conservation equation:
𝜕𝐿

𝜕𝑀
= 𝜀𝑛 + 𝜀𝑔 − 𝜀𝜈

Energy transport equation:
𝜕 ln 𝑇

𝜕𝑀
= −

𝐺 𝑀

4𝜋 𝑟4

1

𝑃
min 𝛻𝑎𝑑, 𝛻𝑟𝑎𝑑

Adiabatic gradient:

𝛻𝑎𝑑 =
𝜕 ln 𝑇

𝜕 ln 𝑃
𝑎𝑑

=
𝑃𝛿

𝑇𝜌𝑐𝑝

Radiative gradient:

𝛻𝑟𝑎𝑑 =
𝜕 ln 𝑇

𝜕 ln 𝑃
𝑟𝑎𝑑

=
3

16 𝜋 𝑎𝑐 𝐺

𝜅𝐿 𝑃

𝑀

Density gradient:

𝛿 =
𝜕 ln 𝜌

𝜕 ln 𝑇
𝑃,𝜇



II - Stellar Structure + Rotation

Continuity equation:
𝜕𝑟𝑃

𝜕𝑀𝑃
=

1

4𝜋 𝑟𝑃
2 ҧ𝜌

Hydrostatic equilibrium equation:
𝜕𝑃

𝜕𝑀𝑃
= −

𝐺 𝑀𝑃

4𝜋 𝑟𝑃
4 𝑓𝑃

Energy conservation equation:
𝜕𝐿𝑃

𝜕𝑀𝑃
= 𝜀𝑛 + 𝜀𝑔 − 𝜀𝜈

Energy transport equation:

𝜕 ln ത𝑇

𝜕𝑀𝑃
= −

𝐺 𝑀𝑃

4𝜋 𝑟𝑃
4

1

𝑃
𝑓𝑃 min 𝛻𝑎𝑑 ,

𝑓𝑇

𝑓𝑃
𝛻𝑟𝑎𝑑

Adiabatic gradient:

𝛻𝑎𝑑 =
𝜕 ln 𝑇

𝜕 ln 𝑃
𝑎𝑑

=
𝑃𝛿

𝑇𝜌𝑐𝑝

Radiative gradient:

𝛻𝑟𝑎𝑑 =
𝜕 ln 𝑇

𝜕 ln 𝑃
𝑟𝑎𝑑

=
3

16 𝜋 𝑎𝑐 𝐺

𝜅𝐿𝑃𝑃

𝑀𝑃

Density gradient:

𝛿 =
𝜕 ln 𝜌

𝜕 ln 𝑇
𝑃,𝜇

Form Factors:

𝑓𝑃 =
4𝜋 𝑟𝑃

4

𝐺 𝑀𝑃 𝑆𝑃

1

< 𝑔𝑒𝑓𝑓
−1 >

𝑓𝑇 =
4𝜋 𝑟𝑃

2

𝑆𝑃

2
1

< 𝑔𝑒𝑓𝑓
−1 >< 𝑔𝑒𝑓𝑓 >



II - Re-definition of variables

We define 𝑟𝑃 that is the “volumetric” radius, given by

𝑉𝑃 =
4𝜋

3
𝑟𝑃 ,

where 𝑉𝑃 is the volume inside an isobar.

For any quantity, 𝑞, which is not constant over an isobaric 

surface, a mean value is defined by

< 𝑞 > =
1

𝑆𝑃
න

Ψ=𝑐𝑜𝑛𝑠𝑡

𝑞 𝑑𝜎 ,

where 𝑆𝑃 = Ψ=𝑐𝑜𝑛𝑠𝑡׬
𝑑𝜎 is the total surface of the isobar and 

𝑑𝜎 is an element of that surface. 

𝑉𝑃

𝑟𝑃

𝑅(𝜃)

In general  𝑟𝑃 ≠ 𝑅(𝜃)

Sphere with 𝑉𝑃

Isobar with 
𝑉𝑃

𝑅/𝑅𝑝𝑜𝑙
𝑅

/𝑅
𝑝

𝑜
𝑙



II - Properties of isobars

Roche model assumption: 

 Φ = −
𝐺𝑀𝑟

𝒓

 For each shell it is like as the mass is all in the center.

Surface equation:

Ψ = Φ −
1

2
Ω2𝑟2 sin2 𝜃 = 𝑐𝑜𝑛𝑠𝑡

From hydrostatic equilibrium:  

𝛁𝑃 = −𝜌 𝒈𝒆𝒇𝒇 = −𝜌 𝛁Ψ − 𝑟2 sin2 𝜃 Ω𝛁Ω .

That implies

𝛁𝑃 ∥ 𝛁Ω ∥ 𝛁Ψ

Φ is the gravitational potential

𝒓 is the radius

Ω is the angular velocity

𝜃 is the colatitude

Ω

𝜃

𝒈

𝒈𝒆𝒇𝒇

𝒂𝐜

𝒓

𝜀



II - Properties of isobars

Roche model assumption: 

 Φ = −
𝐺𝑀𝑟

𝒓

 For each shell it is like as the mass is all in the center.

Surface equation:

Ψ = Φ −
1

2
Ω2𝑟2 sin2 𝜃 = 𝑐𝑜𝑛𝑠𝑡

Hydrostatic equilibrium :  

𝛁𝑃 = −𝜌 𝛁Ψ − 𝑟2 sin2 𝜃 Ω𝛁Ω .

The isobaric surface are not equipotentials and the star 

is said to be baroclinic (non-conservative case). 

In case of solid body rotation, isobars and equipotentials

coincide and the star is barotropic (conservative case).

Φ is the gravitational potential

𝑟 is the radius

Ω is the angular velocity

𝜃 is the colatitude

Ω

𝜃

𝒈

𝒈𝒆𝒇𝒇

𝒂𝐜

𝒓

𝜀

Non-conservative 
case.

ΨP = const

Isobaric surfaces



II - Hydrostatic equilibrium

The classical hydrostatic equation in Lagrangian form is

𝜕𝑃

𝜕𝑀
= −

𝐺 𝑀

4𝜋 𝑟4

In the rotating star, we obtain

𝜕𝑃

𝜕𝑀𝑃
=

−1

< 𝑔𝑒𝑓𝑓
−1 > 𝑆𝑃

If we define the “form” factor as

𝑓𝑃 =
4𝜋 𝑟𝑃

4

𝐺 𝑀𝑃 𝑆𝑃

1

< 𝑔𝑒𝑓𝑓
−1 >

In the end we obtain

𝜕𝑃

𝜕𝑀𝑃
= −

𝐺 𝑀𝑃

4𝜋 𝑟𝑃
4 𝑓𝑃



II - Continuity equation

In the same way we derive the conservation of mass

𝜕𝑟𝑃

𝜕𝑀𝑃
=

1

4𝜋 𝑟𝑃
2 ҧ𝜌

Where

ҧ𝜌 =
𝜌(1 − 𝑟2 sin2 𝜃 Ω 𝛼) < 𝑔𝑒𝑓𝑓

−1 >

< 𝑔𝑒𝑓𝑓
−1 >−< 𝑔𝑒𝑓𝑓

−1 𝑟2 sin2 𝜃 > Ω 𝛼

Is the density averaged in the shell between two isobars.

In general < 𝜌 >≠ ҧ𝜌 ,

but when the mass steps are very small the difference becomes 

negligible. And so

< 𝜌 >≅ ҧ𝜌.

8 𝑀⊙

𝑅/𝑅⊙

𝑅
/𝑅

⊙



II - Stellar Structure + Rotation

Continuity equation:
𝜕𝑟𝑃

𝜕𝑀𝑃
=

1

4𝜋 𝑟𝑃
2 ҧ𝜌

Hydrostatic equilibrium equation:
𝜕𝑃

𝜕𝑀𝑃
= −

𝐺 𝑀𝑃

4𝜋 𝑟𝑃
4 𝑓𝑃

Energy conservation equation:
𝜕𝐿𝑃

𝜕𝑀𝑃
= 𝜀𝑛( ҧ𝜌, ത𝑇) + 𝜀𝑔( ҧ𝜌, ത𝑇) − 𝜀𝜈( ҧ𝜌, ത𝑇)

Energy transport equation:

𝜕 ln ത𝑇

𝜕𝑀𝑃
= −

𝐺 𝑀𝑃

4𝜋 𝑟𝑃
4

1

𝑃
𝑓𝑃 min 𝛻𝑎𝑑 ,

𝑓𝑇

𝑓𝑃
𝛻𝑟𝑎𝑑

Adiabatic gradient:

𝛻𝑎𝑑 =
𝜕 ln ത𝑇

𝜕 ln 𝑃
𝑎𝑑

=
𝑃𝛿

ത𝑇 ҧ𝜌𝑐𝑝

Radiative gradient:

𝛻𝑟𝑎𝑑 =
𝜕 ln ത𝑇

𝜕 ln 𝑃
𝑟𝑎𝑑

=
3

16 𝜋 𝑎𝑐 𝐺

𝜅𝐿𝑃𝑃

𝑀𝑃

Density gradient:

𝛿 =
𝜕 ln ҧ𝜌

𝜕 ln ത𝑇
𝑃,𝜇

Form Factors:

𝑓𝑃 =
4𝜋 𝑟𝑃

4

𝐺 𝑀𝑃 𝑆𝑃

1

< 𝑔𝑒𝑓𝑓
−1 >

𝑓𝑇 =
4𝜋 𝑟𝑃

2

𝑆𝑃

2
1

< 𝑔𝑒𝑓𝑓
−1 >< 𝑔𝑒𝑓𝑓 >



II - Calculating 𝑓𝑃 and 𝑓𝑇

To calculate the form factors, we used the same variables defined 

before, and obtain

𝑓𝑃 =
𝑟𝑃

𝑅𝑃𝑜𝑙

4
1

Σ𝑃 < 𝑔𝑎𝑑
−1 >

𝑓𝑇 =
𝑟𝑃

𝑅𝑃𝑜𝑙

4
1

Σ𝑃
2 < 𝑔𝑎𝑑 >< 𝑔𝑎𝑑

−1 >

𝑉𝑃 =
4

3
𝜋 𝑟𝑃

3 =
4

3
𝜋 𝑅𝑝𝑜𝑙

3 𝑉′

𝑟𝑃
3

𝑅𝑝𝑜𝑙
3 = 𝑉′

𝑅(𝜃) is the radius for an isobar only function of 𝜃.

Ω𝑐𝑟𝑖𝑡 =
2

3

3

2 𝐺 𝑀𝑃

𝑅𝑝𝑜𝑙
3 is the critical angular velocity.

ω =
Ω

Ω𝑐𝑟𝑖𝑡
is the dimensionless “angular velocity”.

𝑥(𝜃) =
𝑅(𝜃)

𝑅𝑝𝑜𝑙
is the dimensionless radius for an isobar.

Dimensionless quantities

S𝑃 = 4𝜋 𝑅𝑝𝑜𝑙
2 Σ𝑃 Σ𝑃 = Ψ=𝑐𝑜𝑛𝑠𝑡׬

𝑑𝜎

< g𝑒𝑓𝑓 > =
𝐺𝑀𝑃

𝑅𝑝𝑜𝑙
2 < 𝑔𝑎𝑑 >

< g𝑒𝑓𝑓
−1 > =

𝑅𝑝𝑜𝑙
2

𝐺𝑀𝑃
< 𝑔𝑎𝑑

−1 >

V𝑃 =
4

3
𝜋 𝑅𝑝𝑜𝑙

3 𝑉′ 𝑉′ = 0׬

Ψ
𝑑𝑛 𝑑𝜎Ω2

2𝜋𝐺 𝜌𝑀
= 𝜔2𝑉′𝜌𝑀 =

𝑀𝑃

𝑉𝑃



II - Calculating 𝑓𝑃 and 𝑓𝑇

Dimensionless  Surface Dimensionless  Volume

Form Parameters 

𝜔 = Ω/Ω𝑐𝑟𝑖𝑡

Σ
𝑃

V
′

𝜔 = Ω/Ω𝑐𝑟𝑖𝑡
𝜔 = Ω/Ω𝑐𝑟𝑖𝑡

Quantities independent from any physical variables of the star, they are only function of 𝜔. 
We can compute them analytically. 

𝑉′ (𝜔)Σ𝑃 (𝜔)

𝑓𝑃 (𝜔)

𝑓𝑇 (𝜔)



II - Implementing rotation in PARSEC

Ω2

2𝜋𝐺 𝜌𝑀
= 𝜔2𝑉′

ω Ω2

2𝜋𝐺 𝜌𝑀

0.0 0.000

0.2 0.009

0.4 0.035

0.6 0.085

0.8 0.165

0.9 0.223

1.0 0.361

𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

Form Parameters 
Stellar structure

𝑀/𝑀𝑠𝑡𝑎𝑟
𝑅/𝑅⊙

𝑅
/𝑅

⊙

𝑓𝑃 (𝑀/𝑀𝑠𝑡𝑎𝑟)

𝑓𝑇 (𝑀/𝑀𝑠𝑡𝑎𝑟)



II - Von  Zeipel Effect

The Von Zeipel theorem (1924) is 

𝑭 Ω, 𝜃 = −
𝐿

4𝜋 𝐺 𝑀∗
𝒈𝑒𝑓𝑓(Ω, 𝜃)

We can easily find the effective surface temperature at

𝑇𝑒𝑓𝑓 Ω, 𝜃 = −
𝐿

4𝜋 𝜎 𝐺 𝑀∗

1
4

𝑔𝑒𝑓𝑓 Ω, 𝜃
1
4

𝑀∗ = 𝑀 1 −
Ω2

2𝜋𝐺 𝜌𝑀
is the effective mass.

𝜎 is the Stefan-Boltzmann constant.

Effective Temperature

Courtesy of Girardi L.

𝑇 𝑒
𝑓

𝑓
[K

]

𝜃 [°]



II – Simple application



Some historical events:

At the times of Galileo (1600) was discovered that the Sun 

rotates.

In 1877 Cpt. Abney W. supposed that we can observe the 

rotation in stars through the Doppler shift of the spectrum 

lines. 

Finally in 1909 Schlesinger was able to detect the shift, and 

derive the rotation of the star δ Librae.

First stellar evolution models: 

Henyey (1964) and later Kippenhahn & Weigert (1967)

developed the first models of stellar evolution that are the 

basis of all the new generation codes, like 

• PARSEC (Bressan et al. 2012) 

• Geneva code (Eggenberger et al. 2008) 

• FRANEC (Chieffi & Limongi 2013) 

• MESA (Paxton et al. 2013).

From Cpt. Abney W. 1877. 

Conclusions:

“I am convinced that from a good 
photograph much might be determined.”

I – Introduction to Stellar Rotation

• RoSE (Potter et al. 2012b) 

• STERN (Yoon & Langer 2005) 

• Kepler (Heger et al. 2000) 



II - Stellar Rotation in simulations

In principle rotation is a full 3D problem, but thanks to Kippenhahn & 

Thomas (1970) and Endal & Sofia (1976) studies, under proper 

assumptions we can simulate the effect of rotation in 1D simulations. 

Those are:

1. Change the spherical stratification with a rotationally deformed 

stratification (equipotentials);

2. Cylindrical symmetry for the angular velocity;

3. 𝛀 = 𝐜𝐨𝐧𝐬𝐭 along the equipotential surfaces;

4. Roche approximation (for simplicity).

With this scheme the surface of the star coincides with the 

equipotential surface (conservative case).

Ω

But the combination of cylindrical symmetry (2.) and Ω = 𝑐𝑜𝑛𝑠𝑡 (3.) necessarily implies a solid body 

rotation, and this would limit the application of the Kippenhahn & Thomas (1970) scheme to differentially 
rotating stars.



II - Stellar Rotation in simulations

In principle rotation is a full 3D problem, but thanks to Kippenhahn & 

Thomas (1970) and Endal & Sofia (1976) studies, under proper 

assumptions we can simulate the effect of rotation in 1D simulations. 

Those are:

1. Change the spherical stratification with a rotationally deformed 

stratification (isobars);

2. Cylindrical symmetry for the angular velocity;

3. Ω = 𝑐𝑜𝑛𝑠𝑡 along the isobars (“shellular” rotation law);

4. Roche approximation.

Zahn (1992) supports the 3rd assumption with the introduction of the 

internal “shellular” rotation law.

The stellar shells do not coincide anymore with equipotentials, but with 

isobars.

Ω

𝜃

𝒈

𝒈𝑒𝑓𝑓

𝒂𝒄

𝒓

𝜀



II - Shape of the star

Ω𝑐𝑟𝑖𝑡 =
2

3

3

2 𝐺 𝑀𝑃

𝑅𝑝𝑜𝑙
3

ω =
Ω

Ω𝑐𝑟𝑖𝑡

𝑥 𝜃 =
𝑅 𝜃

𝑅𝑝𝑜𝑙

Equator

Pole

8 𝑀⊙

𝑅/𝑅⊙

𝑅
/𝑅

⊙

Solid body rotation

Critical angular velocity

Ω
[𝑠

−
1

]
𝑀/𝑀𝑠𝑡𝑎𝑟

~ 90 % Ω𝑐𝑟𝑖𝑡

∼ 400 km/s 

Ω𝑐𝑟𝑖𝑡

Ω



III - Meridional Circulation

From Maeder & Meynet 2002

From Maeder 2009

𝑈 𝑟 ∝ 1 −
Ω2

2𝜋𝐺 𝜌

3D view

𝑙𝑜𝑐𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦



III - Transport of angular momentum 
work in progress

Transport of angular momentum:

𝜌𝑟2
𝑑𝑟2Ω

𝑑𝑡
=

1

5

𝜕

𝜕𝑟
𝜌𝑟4ΩU(𝑟) +

1

𝑟2

𝜕

𝜕𝑟
𝜌𝑟4 𝐷𝑠ℎ𝑒𝑎𝑟

𝜕Ω

𝜕𝑟

advection diffusion

Transport of angular momentum (only diffusion) 

(Heger et al. 2000; Yoon & Langer 2005; Chieffi & 

Limongi 2013):

𝜌𝑟2
𝑑𝑟2Ω

𝑑𝑡
=

1

𝑟2

𝜕

𝜕𝑟
𝜌𝑟4 𝐷

𝜕Ω

𝜕𝑟

𝐷 = Dshear + Dm.c.

Transport of chemical species:

𝜌
𝑑𝑋𝑖

𝑑𝑡
=

1

𝑟2

𝜕

𝜕𝑟
𝜌𝑟4𝐷𝑖

𝜕Xi

𝜕𝑟

Ω(r)

Meridional
Circulation

Ω(r1)

Ω(r2)

Ω r1 ≠ Ω(r2)

To insert the mixing effects due to rotation we need to treat the transport of angular momentum;
Because in the general case the stars rotate in differential way.



III - Meridional Circulation

Maeder & Zahn 1998 developed the theory of Zahn 1992, they 

expand all the physical variables in a radial (vertical) component 

and in a horizontal one.

The general expression for the radial component of the velocity is 

(Eggenberger 2008 , Chieffi & Limongi 2013):

𝑈(𝑟) =
𝑃

ҧ𝜌 ҧ𝑔𝑐𝑝
ത𝑇 𝛻𝑎𝑑 − 𝛻𝑟𝑎𝑑 +

𝜑
𝛿

𝛻𝜇

𝐿

𝑀∗
𝐸Ω + 𝐸𝜇

𝛻𝑎𝑑 =
𝜕 ln 𝑇

𝜕 ln 𝑃
𝑎𝑑

; 𝛻𝑟𝑎𝑑 =
𝜕 ln 𝑇

𝜕 ln 𝑃
𝑟𝑎𝑑

; 𝛻𝜇 =
𝑑 ln 𝜇

𝑑 ln 𝑃

𝛿 =
𝜕 ln 𝜌

𝜕 ln 𝑇
𝑃,𝜇

; 𝜑 =
𝜕 ln 𝜌

𝜕 ln 𝜇
𝑃,𝑇

In case of solid body one could use following Kippenhahn & 

Weigert 1990, (Heger 2000, Chieffi & Limongi 2013, Paxton 2013):

𝑈(𝑟) =
8

3

Ω2 𝑟

𝑔

𝐿

𝑀∗𝑔

𝛾 − 1

𝛾

1

𝛻𝑎𝑑 − 𝛻
1 −

Ω2

2𝜋𝐺 𝜌

Ω(r)

Meridional
Circulation

Ω(r1)

Ω(r2)

Ω r1 ≠ Ω(r2)


