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does equivalence principle hold for objects moving

on a cosmological backgrounc

in (approximately) shift symmetric modified gravity

theories?



FQUIVALENCE PRINCIPLE

O Weak Equivalence Principle (WEP): Miner X & = <D

o the inertial and gravitational masses of a body are equal
o “all objects fall with the same rate” independently on their internal structure

o freely falling test particles follow geodesics of a metric

O Strong Equivalence Principle (SEP): the WEP holds also for self-gravitating bodies
(e.g. neutron stars (10-20 %), black holes (100%))

WEP is presumed to hold in theories with universally coupled matter fields

SEP Is a way to test theories in which the gravitational interactions are modified

O Experimental tests of SEP:

o Nordtvedt effect

O Dipole gravitational radiation from mixed binaries



MODIFIED GRAVITY

o modify gravity at large scales, but keep It fifth
the same (1.e GR) at small scales force

O galileons, massive gravity, etc.
Nicolis, Rattazzi, Trincherini (2009) de Rham, Gabadadze, Tolley (2010)

O typically of a scalar-tensor
type with an additional light scalar, 7

O need a screening mechanism

o (Chameleon—the scalar acquires a large mass

In dense environments Khoury, Weltmann (2004)
; " general
. \/aiﬂShteiﬂ— derivative iﬂtel"aCJ[iOﬂS ( ({97'(') - relativity
become strongly coupled at short scales ‘no’ gravity outside

Vainshtein (1972)



FRAMEVWORK

Einstein, Infeld, Hoffmann (1938)
Damour (1989)
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O define a pseudo-stress tensor (conserved)
G(l) [ R 87TGN75M %
O momentum of the object

Pizﬁo/detiO:—%detij

reduce the calculation to a surface

- Integral—no need to know the internal structure

“0 ADM mass: M = —/dga:'tog, M =0

(conserved)
O com.coordinate X' = —/dgaja;ito O /M

O acceleration: M X' = Pz’

£

O in GR: PZ:
| 87TGN

background—object split ® = ®¢ + ®1(r), Py = $(0) + 9;Po(0)x"

jaf dS; G\? i = —M8;®,



WEP VIOLATION

Hui, Nicolis, Stubbs (2012)

O In a modified gravity with to matter fields one naively

expects all objects with negligible self-gravity to move on jgeodesics with only
post-Newtonian violations of the EP of the order O(1/c”)

O In theories with a this Is not true In general:

0 Chameleon screening: (1) violations of EP

O operates In Brans-Dicke-type theories with non-linear potential

S= M} [ o/ 3R 3900 - V()| + [ dio Lm0 ())

. | GyM
© s(creene)d objects have a different scalar charge: © o< —e -
e—0) 4
. | .. 20
O In Jordan frame test particles move ass M X' = M 0; Py
1 + 2a?

© Vainshtein screening (operates in theories with derivative self-
interactions): no O(1) violations of ER. Why is that so?



cosmological backgrounds
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Gubitosi, Piazza, Vernizzi (2013)

O FRWV background picks a preferred time slicing—
write an EFT for the Goldstones of spontaneously broken time translations
In unrtary gauge

O unifies all single field inflationary models in one
framework; to be compatible with residual symmetries write an EFT using

the building blocks Cheung et al. (2008)
g ok R 0R

O In late time universe matter species are present

5= [ y= | X207

=)
= o SKIOK) + ”;435900] £E / d*z \/—g Lon(Wm, Gur)

O the background evolution is determined by c(t), A(t), f(?)

O the mass parameters () need to be constrained by observations
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O covariant actions can be recovered by Stlickelberg trick: t — ¢ + 7 (¢, ¥)
and reintroducing the scalar field as
X

e = Nt e
M,

O Horndeski theories:

o the most general scalar-tensor theories with second order field
equations Horndeski (1974)

o covariant generalizations of flat space galileons e

o antisymmetric structure of 2nd order derivatives in the action

o contained in our models for m4 = My

O beyond Horndeski theories: allows for higher number of derivatives In
equations of motion while still evading the ‘Ostrogradski ghost’, 14 # 114
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O covariant actions can be recovered by Stlickelberg trick: t — ¢ + 7 (¢, ¥)
and reintroducing the scalar field as

0, < 00 X 5
T t ) 2a'a o PP Rt B—

BC=Clo %)

Li [Gs] = G3(¢, X) O ,

LI [G4) = Gu(9, X) DR — 2G4x (¢, X) [(@9)? — (VFV*)(V, V. 0)]
LEGs] = Gs(¢, X) WG, VFVY ¢ + %G5X(qb, X)x

(0¢)° =308 (VEV ) (VuVoud) +2(V,u V) (VIVY$) (Ve VHP)]




P L QO OARK EINERCE |

O covariant actions can be recovered by Stlickelberg trick: t — ¢ + 7 (¢, ¥)
and reintroducing the scalar field as
X

e = Nt e
M,

O Horndeski theories:

o the most general scalar-tensor theories with second order field
equations Horndeski (1974)

o covariant generalizations of flat space galileons e

o antisymmetric structure of 2nd order derivatives in the action

o contained in our models for m4 = My

O beyond Horndeski theories: allows for higher number of derivatives In
equations of motion while still evading the ‘Ostrogradski ghost’, 14 # 114



SEHEE STYIMMETRY

O after covariantization the action for ¢ is‘almost’ shift symmetric, except for the
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o the source Is always negligible

o the non-linear contributions to the eom are dominated by (3 JZ so that:
3

2cAT + my (HAT + AdD) = %@- O, AT —0,70,0;7]|

One can solve for the asymptotic behavior of the fields!
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find the gravitational force exerted on an object movmg m 5®me/
background gravitational field ®; In FRWV spacetime Gl

ds® = —e*Cdt” + a’([t)e” 2" §;;dx’dz’
define the pseudo-stress tensor as
Mglf(t)G/Lu/ == CZ—IIEJV,7T R D Tuv = Cr,ul\Tl/L,7T 5 5T/§rzl/ s Mglf(t)GlleE

and the momentum P, ,total mass M , c.o.m. coordinate X’ wrt to it

O Tuv is not conserved,so that M #0, X'+ P'/M
O there Is an additional d.of. 7

for a test particle perturbative approximation is valid everywhere and we
find easily:
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screening effects close to the object” -
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must be taken Into account

O this means:
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O perturbative expansion is not valid within Vainshtein ré/di,u
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O perturbative expansion is not valid within Vainshtein rad|us
O volume integrals must be taken with care s
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|. asymptotic behavior depends on the total mass
M= e = —/dS.CCCLSTO()

2. 1tis crucial that the scalar field e.o.m. takes the form of a conserved
current: 3

2cAT +ms (HAT + AD) = m—23(97; O;mAm — 0;70;0;7)
a

this allows one to integrate this expression once and solve on the
boundary outside the Vainshtein radius
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(Tentatively) Only post-Newtonian violations of the WEP!



SUMMARY AND OUTLOOK

In effective field theories of dark energy universally coupled to matter test particles
naturally move on geodesics

Extension to objects with finite size is non-trivial due to the strong coupling nature of the
Vainshtein screening mechanism

Shift symmetry is not exact, moreover the time component of the current is non-vanishing

Due to the antisymmetric structure of the theories considered (i.e. of the Horndeski type)
the equation of the motion of scalar takes the form of spatial divergence in the subhorizon
imit, thus allowing to show that the WEP Is also obeyed by screened extended objects

OUTLOOK: more precise estimate of the order of magnitude of violation of the
equivalence principle

OQUTLOOK: black holes



ANK YOU.



SEP VIOLATION

O a test body and a black hole of the same mass produce identical
gravitational potential

O the scalar typically couples to matter
M2
jes — S (O —?(87)2 IS Ly
m

o for a given object this coupling sources a scalar field profile, 7

o for a BH there is no matter tensor—no scalar field profile—"no hair"

O the absence of scalar hair in flat space due to:
Hui, Nicolis (2012)
o shift symmetry of the scalar self-interactions

o staticity and spherical symmetry of the BH solution
N (e ]

O for objects like neutron stars the SEP violation occurs since their ‘effective
test body mass’ starts to depend on their internal structure e Gy M (mo)

r



