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does equivalence principle hold for objects moving 
on a cosmological background 

in (approximately) shift symmetric modified gravity 
theories?



Weak Equivalence Principle (WEP): 

the inertial and gravitational masses of a body are equal
“all objects fall with the same rate” independently on their internal structure
freely falling test particles follow geodesics of a metric

Strong Equivalence Principle (SEP):  the WEP holds also for self-gravitating bodies 
(e.g. neutron stars (10-20 %), black holes (100%))

★WEP is presumed to hold in theories with universally coupled matter fields 
★ SEP is a way to test theories in which the gravitational interactions are modified

Experimental tests of SEP:

Nordtvedt effect

Dipole gravitational radiation from mixed binaries 
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Idea: modify gravity at large scales, but keep it 
the same (i.e GR) at small scales

Examples: galileons, massive gravity, etc. 

Common feature: typically of a scalar-tensor 
type with an additional light scalar, 

Crucial: need a screening mechanism

Chameleon—the scalar acquires a large mass 
in dense environments 
Vainshtein—derivative interactions       
become strongly coupled at short scales 
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define a pseudo-stress tensor (conserved)

momentum of the object

★ trick 1: reduce the calculation to a surface 
integral—no need to know the internal structure

ADM mass:
 (conserved)

c.o.m. coordinate

acceleration:

FRAMEWORK
Einstein, Infeld, Hoffmann (1938) 

Damour (1989)
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In a modified gravity with universal coupling to matter fields one naively 
expects all objects with negligible self-gravity to move on geodesics with only 
post-Newtonian violations of the EP of the order 

In theories with a screening mechanism this is not true in general:

Chameleon screening:           violations of EP 

operates in Brans-Dicke-type theories with non-linear potential

screened objects have a different scalar charge:

in Jordan frame test particles move as: 

Vainshtein screening (operates in theories with derivative self-
interactions): no          violations of EP.  Why is that so?

WEP VIOLATION
Hui, Nicolis, Stubbs (2012)

O(1)

O(1/c2)

S = M

2
Pl

Z
d

4
x

p
�g̃


1

2
R̃� 1

2
r̃µ'r̃µ

'� V (')

�
+

Z
d

4
xLm( m,⌦�2(')g̃µ⌫)

' / �✏
GNM

r
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cosmological backgrounds



the guiding principle: FRW background picks a preferred time slicing—
write an EFT for the Goldstones of spontaneously broken time translations 
in unitary gauge

EFT of inflation: unifies all single field inflationary models in one 
framework; to be compatible with residual symmetries write an EFT using 
the building blocks 

EFT of dark energy: in late time universe matter species are present

the background evolution is determined by 

the mass parameters            need to be constrained by observations

EFT OF DARK ENERGY I
Gubitosi, Piazza, Vernizzi (2013)

Cheung et al. (2008)
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covariant actions can be recovered by Stückelberg trick:                                    
and reintroducing the scalar field as

Horndeski theories: 

the most general scalar-tensor theories with second order field 
equations
covariant generalizations of flat space galileons
antisymmetric structure of 2nd order derivatives in the action
contained in our models for 

beyond Horndeski theories: allows for higher number of derivatives in 
equations of motion while still evading the ‘Ostrogradski ghost’, 

EFT OF DARK ENERGY II

Horndeski (1974)

Deffayet et al. (2011)
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2.2.4 Horndeski theories

In the last few years, a lot of activity has been focussed on a large class of theories, known as
Hordenski theories [29], shown to be equivalent to Generalized Galileons [30] in [31]. Although their
Lagrangians contain up to second derivatives of a scalar field, these theories correspond to the most
general scalar-tensor theories that directly lead to at most second order equations of motion. As
such, they include all the examples introduced above. They can be written as an arbitrary linear
combination of the following Lagrangians:

LH
2 [G2] ≡ G2(φ,X) , (21)

LH
3 [G3] ≡ G3(φ,X)!φ , (22)

LH
4 [G4] ≡ G4(φ,X) (4)R− 2G4X (φ,X)

[

(!φ)2 − (∇µ∇νφ)(∇µ∇νφ)
]

, (23)

LH
5 [G5] ≡ G5(φ,X) (4)Gµν∇µ∇νφ+

1

3
G5X(φ,X)×

[

(!φ)3 − 3!φ (∇µ∇νφ)(∇µ∇νφ) + 2 (∇µ∇νφ)(∇σ∇νφ)(∇σ∇µφ)
]

. (24)

Rewriting these Lagrangians in the ADM form turns out to be significantly more involved than in the
previous examples. This calculation was undertaken in [1], where all the details are given explicitly.
The final result is that the above Lagrangians (21)–(24) yield, in the ADM form, combinations of
the following four Lagrangians

LH
2 = F2(φ,X) , (25)

LH
3 = F3(φ,X)K , (26)

LH
4 = F4(φ,X)R + (2XF4X − F4)(K

2 −KµνKµν) , (27)

LH
5 = F5(φ,X)GµνK

µν −
1

3
XF5X (K3 − 3KKµνK

µν + 2KµνK
µσKν

σ) . (28)

The functions Fa appearing here are related to the Ga in eqs. (21)–(24) through (see [1] for details)
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It is then straightforward to express the above Lagrangians in ADM coordinates (8).

2.2.5 Beyond Horndeski

Requiring equations of motion to be at most second order, which leads to Horndeski theories, has
long seemed to be a necessary requirement in order to avoid ghost-like instabilities, associated with
higher order time derivatives, also known as Ostrogradksi instabilities. However, it has been shown
in [19, 20] (see also [24] for similar analysis and conclusion and [21, 22, 25] for extensions) that an
action composed of the Lagrangians

L2 ≡ A2(t,N) ,

L3 ≡ A3(t,N)K ,

L4 ≡ A4(t,N)
(

K2 −KijK
ij
)

+B4(t,N)R ,

L5 ≡ A5(t,N)
(

K3 − 3KKijK
ij + 2KijK

ikKj
k

)

+B5(t,N)Kij

(

Rij −
1

2
hijR

)

,

(30)
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rV

S

after covariantization the action for     is ‘almost’ shift symmetric, except for the 
terms:

the equation of motion for the scalar 

has an explicit source term 
the time component   

in quasi-static subhorizon limit for 

the source is always negligible 
the non-linear contributions to the eom are dominated by           so that:

One can solve for the asymptotic behavior of the fields!
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Goal: find the gravitational force exerted on an object moving in some 
background gravitational field       in FRW spacetime 

define the pseudo-stress tensor as

and the momentum      , total mass      , c.o.m. coordinate       wrt to it

in distinction from GR: 
       is not conserved, so that 
there is an additional d.o.f.   

for a test particle perturbative approximation is valid everywhere and we 
find easily: 
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Ẍi + 2HẊi =
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(SCREENED) EXTENDED OBJECTS

rV
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In distinction from test particles: screening effects close to the object 
must be taken into account

this means:
perturbative expansion is not valid within Vainshtein radius
volume integrals must be taken with care



1. asymptotic behavior depends on the total mass 

2. it is crucial that the scalar field e.o.m. takes the form of a conserved 
current:

this allows one to integrate this expression once and solve on the 
boundary outside the Vainshtein radius
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(SCREENED) EXTENDED OBJECTS
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In distinction from test particles: screening effects close to the object 
must be taken into account

this means:
perturbative expansion is not valid within Vainshtein radius
volume integrals must be taken with care

(Tentatively) Only post-Newtonian violations of the WEP!



SUMMARY AND OUTLOOK

In effective field theories of dark energy universally coupled to matter test particles 
naturally move on geodesics

Extension to objects with finite size is non-trivial due to the strong coupling nature of the 
Vainshtein screening mechanism

Shift symmetry is not exact, moreover the time component of the current is non-vanishing

Due to the antisymmetric structure of the theories considered (i.e. of the Horndeski type) 
the equation of the motion of scalar takes the form of spatial divergence in the subhorizon 
limit, thus allowing to show that the WEP is also obeyed by screened extended objects 

OUTLOOK: more precise estimate of the order of magnitude of violation of the 
equivalence principle

OUTLOOK: black holes



THANK  YOU.



in GR: a test body and a black hole of the same mass produce identical 
gravitational potential
in a scalar-tensor theory: the scalar typically couples to matter

for a given object this coupling sources a scalar field profile,
for a BH there is no matter tensor—no scalar field profile—“no hair”

in galileon theories the absence of scalar hair in flat space due to: 
shift symmetry of the scalar self-interactions
staticity and spherical symmetry of the BH solution

for objects like neutron stars the SEP violation occurs since their ‘effective 
test body mass’ starts to depend on their internal structure

SEP VIOLATION

Hui, Nicolis (2012)
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