

Riccardo Murgia (SISSA, Trieste)

A general approach for testing non-cold dark matter at small scales

 \Rightarrow present Universe mainly composed by a cosmological constant (Λ) and by cold dark matter (CDM) $\Rightarrow \Lambda$ CDM model

Overview

Cosmic microwave background (CMB) and large scale structure (LSS) data \Rightarrow \Rightarrow present Universe mainly composed by a cosmological constant (Λ) and by cold dark matter (CDM) $\Rightarrow \Lambda$ CDM model

However, ACDM model shows some limits at sub-galaxy scales:

- Missing satellite problem Cosmological N-body simulations predict too many substructures around the Milky Way (MW) with respect to the observed number of MW satellites
- Cusp-core problem Cosmological N-body simulations predict too much dark matter (DM) in the innermost regions of galaxies
- *Too-big-to-fail* problem The dynamical properties of massive MW satellites are not reproduced in cosmological simulations

This small-scale "crisis" could be solved either by baryon physics, still not perfectly understood and implemented in cosmological simulations, or by modifying the nature of DM

Models with suppressed power spectra: "non-cold" DM (nCDM)

- CDM \iff velocity dispersion so small that the corresponding free-streaming lenght is negligible for cosmological structure formation
- nCDM \iff suppression of the matter power spectrum P(k) on scales smaller than their free-streaming lenght, which is NON-negligible for structure formation ($m \sim \text{keV} \Rightarrow \lambda_{\text{fs}} \sim \text{Mpc}$)

This phenomenon is described by the so-called transfer function T(k):

$$T^2(k) = \left[rac{P(k)_{
m nCDM}}{P(k)_{
m CDM}}
ight]$$

i.e. the square root of the ratio of the power spectrum in the presence of nCDM with respect to that in the presence of CDM only

Models with suppressed power spectra: "non-cold" DM (nCDM)

- CDM \iff velocity dispersion so small that the corresponding free-streaming lenght is negligible for cosmological structure formation
- nCDM \iff suppression of the matter power spectrum P(k) on scales smaller than their free-streaming lenght, which is NON-negligible for structure formation ($m \sim \text{keV} \Rightarrow \lambda_{\text{fs}} \sim \text{Mpc}$)

This phenomenon is described by the so-called transfer function T(k):

$$T^2(k) = \left[rac{P(k)_{
m nCDM}}{P(k)_{
m CDM}}
ight]$$

i.e. the square root of the ratio of the power spectrum in the presence of nCDM with respect to that in the presence of CDM only

DIFFERENT nCDM SCENARIOS $\downarrow \downarrow$ DIFFERENT SHAPES OF THE POWER SUPPRESSION (i.e. of T(k))

What next

Thermal warm dark matter (WDM): the standard approach

Thermal WDM \iff DM candidates with a Fermi-Dirac momentum distribution $\downarrow \downarrow$ Very specific shape of the power suppression (i.e. of the transfer function T(k))

The transfer function is well described by:

Most of the astrophysical constraints obtained so far, refer to thermal WDM. Nonetheless, several viable DM candidates do not have a thermal momentum distribution \implies the corresponding transfer functions may have non-trivial features!

Standard approach

New general approach

$$T(k) = [1 + (\alpha k)^{2\nu}]^{-5/\nu} \quad \Rightarrow \quad T(k) = [1 + (\alpha k)^{\beta}]^{\gamma}$$

Standard approach

New general approach

$$T(k) = [1 + (\alpha k)^{2\nu}]^{-5/\nu} \quad \Rightarrow$$

 $T(k) = [1 + (\alpha k)^{\beta}]^{\gamma}$

Standard approach

 $T(k) = [1 + (\alpha k)^{2\nu}]^{-5/\nu} \quad \Rightarrow \quad$

New general approach

$T(k) = [1 + (\alpha k)^{\beta}]^{\gamma}$

$$T^{2}(k) = 0.5$$

$$(10.5)^{-\nu/10} - 1)^{1/2\nu} \alpha^{-1}$$

$$T^{2}(k) = 0.5$$

$$(0.5)^{1/2\gamma} - 1)^{1/\beta} \alpha^{-1}$$

Standard approach ${\cal T}(k) = [1+(lpha k)^{2 u}]^{-5/ u}$

$$T^{2}(k) = 0.5$$

$$(10.5)^{-\nu/10} - 1)^{1/2\nu} \alpha^{-1}$$

- one-to-one correspondence $\alpha \leftrightarrow m_{\text{WDM}} \leftrightarrow k_{1/2}$

$$\begin{array}{l} m'_{\rm WDM} = 2 \ {\rm keV} \ \longleftrightarrow \ k'_{1/2} = 14.323 \ {\rm h/Mpc} \\ \\ m''_{\rm WDM} = 3 \ {\rm keV} \ \longleftrightarrow \ k''_{1/2} = 22.463 \ {\rm h/Mpc} \\ \\ \\ m''_{\rm WDM} = 4 \ {\rm keV} \ \longleftrightarrow \ k''_{1/2} = 30.914 \ {\rm h/Mpc} \end{array}$$

New general approach

$$T(k) = [1 + (\alpha k)^{\beta}]^{\gamma}$$

$$T^{2}(k) = 0.5$$

 $(0.5)^{1/2\gamma} - 1)^{1/\beta})\alpha^{-1}$

- constraints on $m_{\rm WDM}$ (or $k_{1/2}$) are mapped into 3D surfaces in the $\{\alpha, \beta, \gamma\}$ -space

Riccardo Murgia (SISSA, Trieste) A general approach for testing non-cold dark matter at small scales

The position of $k_{1/2}$ is set by α , while β and γ are responsible of the slope of T(k) before and after $k_{1/2}$, respectively. β must be positive in order to have meaningful transfer functions ($\beta < 0$ gives a T(k) that differs from 1 at large scales). The larger is β , the flatter is T(k) before $k_{1/2}$. The larger is the absolute value of γ , the sharper is the cut-off.

Connection with particle physics models (I)

Being able to reproduce a large variety of shapes in the suppression of the matter power spectrum, our general parametrisation accurately describes the most popular non-thermal DM scenarios provided by theoretical particle physics:

- Sterile neutrinos by resonant production
- Sterile neutrinos from particle decay production
- Mixed (cold + warm) DM
- Fuzzy DM

Connection with particle physics models (I)

Being able to reproduce a large variety of shapes in the suppression of the matter power spectrum, our general parametrisation accurately describes the most popular non-thermal DM scenarios provided by theoretical particle physics:

- Sterile neutrinos by resonant production
- Sterile neutrinos from particle decay production
- Mixed (cold + warm) DM
- Fuzzy DM
- Effective THeory Of Structure formation (ETHOS)*

^{*} Vogelsberger et al. (2015), Cyr-Racine et al. (2015)

Connection with particle physics models (II)

Being able to reproduce a large variety of shapes in the suppression of the matter power spectrum, our general parametrisation accurately describes the most viable non-thermal DM scenarios, such as sterile neutrinos, mixed cold+warm models, fuzzy DM.

Connection with particle physics models (III)

Being able to reproduce a large variety of shapes in the suppression of the matter power spectrum, our general parametrisation accurately describes the most viable non-thermal DM scenarios, such as sterile neutrinos, mixed cold+warm models, fuzzy DM.

What next

Bounds from the Lyman- α forest - Overview

Lyman- α forest \equiv Lyman- α absorption produced by intergalactic neutral hydrogen in the spectra of distant quasars (thus a probe of the matter power spectrum on scales 0.5 h/Mpc < k < 50 h/Mpc)

Bounds from the Lyman- α forest - The "Area Criterion" (I)

– Flux power spectrum, the physical observable in Lyman- α forest experiments:

$$P_{\rm F}(k) = b^2(k)P_{\rm 1D}(k)$$
 with $P_{\rm 1D}(k) = \frac{1}{2\pi}\int_k^\infty dk' k' P_{\rm 3D}(k')$

hydrodynamical simulations \Rightarrow $P_{\rm F}(k)$ \Rightarrow comprehensive data analysis

- The bias $b^2(k)$ differs very little between standard CDM and our nCDM models, thus:

$$r(k) = \frac{P_{\rm 1D}^{\rm nCDM}(k)}{P_{\rm 1D}^{\rm CDM}(k)} \approx \frac{P_{\rm F}^{\rm nCDM}(k)}{P_{\rm F}^{\rm CDM}(k)}$$

- Estimator of the suppression of the power spectrum, with respect to standard CDM:

$$\delta A = rac{A_{
m CDM} - A}{A_{
m CDM}}$$
 with $A = \int_{k_{
m min}}^{k_{
m max}} r(k) dk$

- A model is excluded (at 95% C.L.) if it is characterised by a larger power suppression with respect to the most updated constraints on thermal WDM candidates (at 95% C.L.) obtained from comprehensive Lyman- α analyses, i.e. if:

$$\delta A > \delta A_{\rm REF}$$

Bounds from the Lyman- α forest - The "Area Criterion" (II)

The most stringent constraints on thermal WDM masses from a full statistical analysis of Lyman- α forest data have been recently obtained by using the MIKE/HIRES+XQ-100 dataset (0.5 h/Mpc < k < 20 h/Mpc) [Irsic et al. (2017)]

 $\alpha \leq 0.044 \text{ Mpc}/h$ (95% C.L.)

 $\alpha \leq 0.058 \text{ Mpc}/h$ (95% C.L.)

Reality-check

The fitting formula reproduces the true results to a very high degree!

	α	β	γ	$k_{1/2} \; [h/{ m Mpc}]$	$N_{ m sub}^{ m fit}$ $(N_{ m sub}^{ m true})$ [%]	Agree?	$\delta A_{\rm fit} (\delta A_{\rm true}) [\%]$	Agree?
	0.025	2.3	-2.6	17.276	38 (39) [-2.6%]	\checkmark	0.555 (0.571) [-2.8%]	\checkmark
RP	0.071	2.3	-1.0	9.828	15 (14) [+7.1%]	✓	0.743 (0.754) [-1.5%]	\checkmark
neutrinos	0.038	2.3	-4.4	8.604	5 (5) [±0.0%]	✓	0.799 (0.810) [-1.4%]	\checkmark
	0.035	2.1	-1.5	15.073	35~(37)~[-5.4%]	 ✓ 	0.599~(0.613)~[-2.3%]	\checkmark
Neutrinos	0.016	2.6	-8.1	19.012	38(42)[-9.5%]	\checkmark	$0.521 \ (0.535) \ [-2.6\%]$	\checkmark
from	0.011	2.7	-8.5	28.647	91 (97) [-6.2%]	✓	0.339(0.360)[-5.8%]	\checkmark
particle	0.019	2.5	-6.9	16.478	27 (28) [-3.6%]	✓	$0.582 \ (0.576) \ [+1.0\%]$	\checkmark
decay	0.011	2.7	-9.8	26.31	79 (87) [-9.2%]	 ✓ 	0.375 (0.390) [-3.8%]	×
	0.16	3.2	-0.4	6.743	9 (9) [±0.0%]	\checkmark	0.823 (0.834) [-1.3%]	\checkmark
Mixed	0.20	3.7	-0.18	7.931	28 (27) [+3.7%]	 ✓ 	0.738~(0.752)~[-1.9%]	\checkmark
models	0.21	3.7	-0.1	11.36	60 (62) [-3.2%]	✓	0.596~(0.610)~[-2.3%]	\checkmark
	0.21	3.4	-0.053	33.251	110 (114) [-3.5%]	 ✓ 	0.365 (0.377) [-3.2%]	\checkmark
	0.054	5.4	-2.3	13.116	8 (9) [-11.1%]	\checkmark	0.691 (0.708) [-2.4%]	\checkmark
Fuzzy	0.040	5.4	-2.1	18.106	21 (23) [-8.7%]	✓	$0.543 \ (0.565) \ [-3.9\%]$	\checkmark
DM	0.030	5.5	-1.9	25.016	56 (60) [-6.7%]	✓	0.376(0.399)[-5.8%]	×
	0.022	5.6	-1.7	34.590	121 (126) [-4.0%]	 ✓ 	0.228 (0.250) [-8.8%]	\checkmark
	0.0072	1.1	-9.9	7.274	18 (19) [-5.3%]	\checkmark	$0.780 \ (0.788) \ [-1.0\%]$	\checkmark
ETHOS	0.013	2.1	-9.3	16.880	36 (39) [-7.7%]	✓	0.568~(0.581)~[-2.2%]	\checkmark
models	0.014	2.9	-10.0	21.584	50(53)[-5.7%]	✓	0.463 (0.477) [-2.9%]	\checkmark
	0.016	3.4	-9.3	23.045	53 (56) [-5.4%]	 ✓ 	0.430 (0.439) [-2.1%]	\checkmark

A general approach for testing non-cold dark matter at small scales

Riccardo Murgia (SISSA, Trieste)

 We modified the numerical code 2LPT¹, which generates initial conditions for cosmological simulations, by implementing the new transfer function: now it takes as inputs {α, β, γ} instead of m_{WDM}, and it computes the corresponding T(k) with the new, general fitting formula

• We used these initial conditions for running 55 full hydrodynamical simulations (512³ particles in a 20 Mpc/*h* box, up to redshift z = 2) with GADGET-3², in order to extract the corresponding flux power spectra

¹Crocce et al. (2006)

²Springel et al. (2000), Springel (2005)

What now:

• Performing 55 additional simulations, in order to refine the $\{\alpha, \beta, \gamma\}$ grid (almost done)

What now:

• Performing 55 additional simulations, in order to refine the $\{\alpha, \beta, \gamma\}$ grid (almost done)

• Developing an accurate interpolation method for estimating the expected flux power spectrum in any $\{\alpha, \beta, \gamma\}$ -point sampling the volume embraced by the grid of simulations (work in progress)

What now:

- Performing 55 additional simulations, in order to refine the $\{\alpha, \beta, \gamma\}$ grid (almost done)
- Developing an accurate interpolation method for estimating the expected flux power spectrum in any $\{\alpha, \beta, \gamma\}$ -point sampling the volume embraced by the grid of simulations (work in progress)

Ordinary Kriging method $\Rightarrow P_F(k, z, \{\alpha, \beta, \gamma\}) = \sum_{i=1}^{110} \lambda_i P_F(k, z, \{\alpha, \beta, \gamma\}_i)$ with:

$$\lambda_{i} \equiv \frac{D(\{\alpha, \beta, \gamma\}_{i}, \{\alpha, \beta, \gamma\})^{-1}}{\sum_{j=1}^{110} D(\{\alpha, \beta, \gamma\}_{j}, \{\alpha, \beta, \gamma\})^{-1}};$$
$$\sum_{i=1}^{110} \lambda_{i} = 1;$$

 $D(\{\alpha,\beta,\gamma\}',\{\alpha,\beta,\gamma\}) \equiv ([(\alpha'_{norm} - \alpha_{norm})^2 + (\beta'_{norm} - \beta_{norm})^2 + (\gamma'_{norm} - \gamma_{norm})^2]^{1/2} + \epsilon)^{\xi};$

$$\xi = 4; \quad \epsilon = 10^{-9}; \quad \alpha_{norm} \equiv \frac{\alpha}{\alpha_{max} - \alpha_{min}}, \ ..$$

What now:

- Performing 55 additional simulations, in order to refine the $\{\alpha, \beta, \gamma\}$ grid (almost done)
- Developing an accurate interpolation method for estimating the expected flux power spectrum in any $\{\alpha, \beta, \gamma\}$ -point sampling the volume embraced by the grid of simulations (work in progress)

Ordinary Kriging method $\Rightarrow P_F(k, z, \{\alpha, \beta, \gamma\}) = \sum_{i=1}^{110} \lambda_i P_F(k, z, \{\alpha, \beta, \gamma\}_i)$ with:

$$\lambda_{i} \equiv \frac{D(\{\alpha, \beta, \gamma\}_{i}, \{\alpha, \beta, \gamma\})^{-1}}{\sum_{j=1}^{110} D(\{\alpha, \beta, \gamma\}_{j}, \{\alpha, \beta, \gamma\})^{-1}};$$
$$\sum_{i=1}^{110} \lambda_{i} = 1;$$

 $D(\{\alpha, \beta, \gamma\}', \{\alpha, \beta, \gamma\}) \equiv ([(\alpha'_{norm} - \alpha_{norm})^2 + (\beta'_{norm} - \beta_{norm})^2 + (\gamma'_{norm} - \gamma_{norm})^2]^{1/2} + \epsilon)^{\xi};$ $\xi = 4; \quad \epsilon = 10^{-9}; \quad \alpha_{norm} \equiv \frac{\alpha}{\alpha_{max} - \alpha_{min}}, \dots$

• Carrying out a comprehensive Monte Carlo Markov Chain (MCMC) analysis of the Lyman- α forest data, in order to extract absolute constraints on $\{\alpha, \beta, \gamma\}$ easily translatable to bounds on the fundamental nCDM properties, through the scheme that we have illustrated

Thanks for the attention!

Riccardo Murgia (SISSA, Trieste)

A general approach for testing non-cold dark matter at small scales

BACKUP SLIDES

Riccardo Murgia (SISSA, Trieste)

A general approach for testing non-cold dark matter at small scales

Bounds from MW satellite counts (based on linear perturbation theory)

Any nCDM model must predict a number of substructures within the MW virial radius not smaller than the actual number of MW satellites that we observe, i.e. $N_{\rm sub} < N_{\rm obs} \simeq 60$ $(M_{\rm MW} = 1.7 \cdot 10^{12} M_{\rm sun})$ [Schneider (2016)]

"Conservative" case (95% C.L. limit)

"Non-conservative" case (95% C.L. limit)

 $\alpha \leq 0.061 \text{ Mpc}/h$ (95% C.L.)

 $N_{\rm sat}=57$

 $N_{
m sat}=63$

 $\alpha \leq 0.067 \text{ Mpc}/h$ (95% C.L.)

What next

DM-only simulations - Results

Non-linear power spectra and halo mass functions extracted from 55 DM-only simulations with 512³ particles in a 20 Mpc/*h* box, each of them corresponding to a different { α, β, γ }--combination, i.e. a different nCDM scenario.

Riccardo Murgia (SISSA, Trieste)

A general approach for testing non-cold dark matter at small scales

DM-only simulations - Comparison with theoretical predictions

