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Nambu-Goldstone bosons, 
QCD axion, 
string axiverse, 
mediators, 
etc.

e.g. 

WHY BOTHER?

Because light scalars are ubiquitous in extensions 
of the Standard Model of particle physics.

Peccei, Quinn ’77  Weinberg ’78  Wilczek ’78

Svrcek, Witten ’06
Arvanitaki, Dimopoulos, Dubovsky, 
Kaloper, J. March-Russell ’09
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Today’s talk



Cosmological Constraints on Ultralight Scalars
arXiv:1708.00015  TK, Murgia, De Simone, Iršič, Viel
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PECULIAR FEATURES OF LIGHT SCALAR DM

• suppression of structure formation on small scales

• DM isocurvature perturbations on large scales

→ constrained by Lyman-α forest

→ constrained by CMB



SUPPRESSION OF STRUCTURE FORMATION
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Ultralight scalar DM has been expected
to solve the small-scale “problems” of CDM

(e.g. missing-satellite, too-big-to-fail, core-cusp).
Hui, Ostriker, Tremaine, Witten ’16Hu, Barkana, Gruzinov ’00

suppression of linear matter 
power spectrum for

m = 10�22 eV

Wave nature of the scalar field is prominent on 
small scales (< de Broglie wavelength).



LYMAN-α FOREST

figure from Springel, Frenk, White astro-ph/0604561

image courtesy of  Vid Iršič



LYMAN-α CONSTRAINT
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scalar mass constraints on m also analyzed in
Iršič et al. ’17,   Armengaud et al. ’17
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IMPLICATIONS FOR MISSING SATELLITES

Analytic estimate of Milky Way satellites suggests

there is very little room for ultralight DM to solve the problem.
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CMB CONSTRAINT ON DM ISOCURVATURE

light scalars obtain super-horizon field fluctuations during inflation
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Note : all constraints apply to generic 
theories that contain ultralight scalar fields



Baryon Asymmetry from a Light Scalar :
Geometric Baryogenesis

arXiv:1612.04824  Liberati, TK, De Simone



BASIC ASSUMPTIONS

• existence of a scalar with an (approximate) shift symmetry

• the scalar is allowed to couple to various fields through 
shift-symmetric operators
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Alternatively,
it also works with 
the QCD axion!

GEOMETRIC BARYOGENESIS WITH 
AN ULTRALIGHT SCALAR



SUMMARY

• Light scalars are ubiquitous in theories beyond the SM, and 
if present, they inevitably make up a fraction of dark matter.

• (Probably) cannot solve the small-scale issues without 
spoiling the Lyman-α forest.

• Can generate the baryon asymmetry of our Universe!


