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WHY BOTHER!

Because light scalars are ubiguitous in extensions
of the Standard Model of particle physics.

e.g. Nambu-Goldstone bosons,
QCD axion, Peccei, Quinn 77 Weinberg 78 Wilczek 78

String axiverse,  Svrcek,Witten '06

: Arvanrtaki, Dimopoulos, Dubovsky,
medlators, Kaloper, J. March-Russell '09
etc.
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JToday's talk




Cosmological Constraints on Ultralight Scalars
arXiv:1 7/08.00015 TK, Murgia, De Simone, IrSi¢, Viel
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PECULIAR FEATURES OF LIGHT SCALAR DM

* suppression of structure formation on small scales

— constrained by Lyman-& forest

- DM Isocurvature perturbations on large scales

— constrained by CMB



SUPPRESSION OF STRUCTURE FORMATION

Wave nature of the scalar field 1s prominent on
small scales (< de Broglie wavelength).
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Ultralight scalar DM has been expected
to solve the small-scale “problems™ of CDM
(e.g. missing-satellite, too-big-to-fall, core-cusp).

Hu, Barkana, Gruzinov '00 Hui, Ostriker, Tremaine, Witten ' | 6




LYMAN-o« FOREST
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scalar DM fraction
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scalar mass constraints on m also analyzed in

IrSic et al."I/, Armengaud et al. "1 /



initial field displayment
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IMPLICATIONS FOR MISSING SATELLITES

Analytic estimate of Milky Way satellites suggests
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there Is very little room for ultralight DM to solve the problem.



CMB CONSTRAINT ON DM ISOCURVATURE

ight scalars obtain super-horizon field fluctuations during inflation
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Note : all constraints apply to generic
theories that contain ultralight scalar fields
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Baryon Asymmetry from a Light Scalar:
Geometric Baryogenesis

arXiv:1612.04824 Liberatl, TK, De Simone




BASIC ASSUMPTIONS

» existence of a scalar with an (approximate) shift symmetry

» the scalar Is allowed to couple to various fields through

shift-symmetric operators
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GEOMETRIC BARYOGENESIS
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In a flat FRVWW universe

. : 3 .
G=24(H"+ H’H), ¢:8Hﬁ7 ?vuj%:—?nB

— relative shift in baryon/antibaryon spectra

— baryogenesis even In equilibrium

(due to CPT violation)
Cohen, Kaplan '8/ —




GEOMETRIC BARYOGENESIS
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GEOMETRIC BARYOGENESIS WITH
AN ULTRALIGHT SCALAR
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GEOMETRIC BARYOGENESIS WITH
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GEOMETRIC BARYOGENESIS WITH

AN ULTRALIGHT SCALAR
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Alternatively,
it also works with

the QCD axion!




SUMMARY

» Light scalars are ubiqurtous in theories beyond the SM, and
it present, they inevitably make up a fraction of dark matter.

* (Probably) cannot solve the small-scale issues without
spoiling the Lyman-& forest.

- Can generate the baryon asymmetry of our Universe!



