

The challenge of interferometry on Earth (Virgo/ET)

Dott. Davide Rozza

Objective of GRAF: development of new models and analysis techniques for high-precision measurements of gravitational waves

Sources of gravitational waves

Detectors

Ground interferometers

*O4 entries are preliminary candidates found online

O4a: 2023-05-24 to 2024-01-16 O4b: 2024-04-10 to 2025-01-23 O4c: 2025-01-24 to 2025-06-09

930 members165 institutions20 Countries

VIRGO

Basic of GW detections

Two test masses

Free falling objects that sense the GW

A laser light, λ is the ruler tick mark

GW signals and... noise

We need to enhance the signal and reduce the noise

12

14

EGOMONIVIRG Sensitivity curve

EGO((()))VIRGO Enhance the signal

Fabry-Perot cavity for "longer arms": the presence of the optical cavities increases the number of round trip of the light, therefore enhancing the gain of the instrument

Input and output mode cleaner to reject the laser high-order modes

Power Recycling mirror to recover the power reflected from the arms and increase the optical power (*PRM*)

Signal Recycling mirror (SRM) to reshape the detector frequency response

EGO ((CO)) VIRGO Displacement noise

Superattenuators: reduces mirrors seismic vibration by a factor 10¹⁵

Thermal fluctuation ofthe mirror surface.40 kg mirrors fused silica

Ultra high vacuum

It has a total volume of 7000 m^3 and is kept at a pressure of 10^{-9} mbar

Magnetic noise sources

Magnets are attached to mirrors to allow position control (electronics at least 10 m from the mirrors, lightning...)

Local gravity (NN)

(ground moves due to seismic earthquakes, sea waves...)

Sensing noise

Shot noise: photon counting noise

P = Power

Radiation pressure noise: Photons fluctuations translate in radiation pressure fluctuations, giving rise to random motion of the mirrors

$$h_{rad} \propto \frac{1}{f^2 L} \frac{\sqrt{P}}{\mathrm{m}}$$

Dark noise

Electronic noise

Scattered light

...

(add absorbing glass everywhere, suspend optical elements, ...)

VIRGO science

BNS range holes due to:
exceptional intervention, strong wind...
BNS range performance reduction:
bad weather, glitches, issues, photodiode saturation...

VIRGO data used in low latency for sky localization

Still working to identify noise sources and reduce them

VIRGO @ MIB

Impact of the wind on the Virgo sensitivity and BNS range

BICOQ

I ECCELLENZA

VIRGO post O4

O5 (AdV+)

Improve detector robustness, with the installation of stable recycling cavities Improve sensitivity, avoiding that gap with LIGO becomes too deep

Current plan: short (internal) stable cavities at the cost of a later start of O5

BNS range = 100 Mpc (Low), 160 Mpc (High) BBH range = 1 Gpc (Low), 1.42 Gpc (High)

Post O5 (Virgo nEXT)

Same infrastructure Same laser wavelength Room temperature mirrors

Upgrades:

O (MW) intracavity power Larger test masses, better coatings NN subtraction Improved LF sensitivity

Virgo_nEXT will be a "pathfinder" for ET(HF)

	AdV+ best	V_next best	ET HF
Power inj.	125 W	277 W	500 W
Arm power	390 kW	1.5 MW	3 MW
FDS detected	6 dB	10 dB	10 dB
Mirror mass	42/105 kg	105 kg	200 kg
beam radius	49/91 mm	91 mm	120 mm

3rd GW detectors

3rd generation GW observatory. Sensitivity aims at least one order of magnitude better with respect to the nominal sensitivity of advanced detectors in all the detection frequency band

Special focus on massive (or intermediate mass) black holes. Extraordinary sensitivity at low frequency (few Hz)

High reliability. High observation duty cycle

Lifetime of several decades. Capable to host the evolution of the detectors, without limiting their sensitivity

Einstein Telescope physics

BICOQ

DIPARTIMENTI

ET challenges

Requirements

- Wide frequency range
- Massive black holes (LF focus)
- Localisation capability
- (more) Uniform sky coverage
- Polarisation disentanglement
- High Reliability (high duty cycle)
- High SNR

Design Specifications

- Xylophone (multiinterferometer)
 Design
- Underground
- Cryogenic
- Triangular shape
- Multi-detector design
- Longer arms

ET candidate sites

Site characterization

ET layout

Since COBA and ETRAC analysis are in agreements that 2L are favoured wrt Δ , and thanks to the geology, in Sardinia it is possible to host both Δ and L configurations

Site characterization

Permanent and temporary ARRAY for characterization and Newtonian noise purposes

Sos Enattos broadband array (January 2021)

P2 broadband array + geophones (September 2021)

P3 broadband array + geophones (July & Oct 2021)

Explosion broadband array (early 2022)

Wind Park broadband array (early 2023)

Sensors installed or to be installed:

- Seismometers
- Magnetometers
- Micro-barometers
- Acoustic sensors
- Weather stations
- Gravimeters
- ...

Drilling campaign

ET @ MIB

Study the impact of site noise on the ET sensitivity curve and its impact on the detectability of the aforementioned GW sources for early warning purposes.

Seismic ASD Displ.

Newtonian Noise ASD

ET sensitivity

ET noise

200

300

Time from 2024-03-25 14:06:19 988037 [

Generate waveforms

Inject signal into noise

Compare the SNRs with the design case

SNR/SNR_design

GW global network: Kagra

KAGRA (かぐら)

Large-scale Cryogenic Gravitational-wave Telescope 2nd generation GW detector in Japan Large-scale Detector Baseline length: 3km High-power Interferometer Cryogenic interferometer Mirror temperature: 20K Underground site Kamioka site dedicated L-shaped tunnel O4a (may-June) 2023: ~1.3 Mpc All the noise source are identified ~10 Mpc for the end of O4b

Kagra will join O5 with > 25 Mpc

- New ITMs for O5 (better symmetry and birefringence)
- Mirror/Suspension Q-factor improvement
- New SRM/ITM
- High Power Laser
- Squeezer
- Possibly a Filter Cavity
- O5 is expected to run for 3 years from 2027 (TBC)
- Make a detailed plan for post-O5 upgrade in 2025
- Start the preparation for the post-O5 upgrade from 2026
- · O6 plan is too ambiguous at this moment?

GW global network: LIGO-India

Planned for 2030

GW global network: LIGO \rightarrow CE

LIGO Hanford, Washington

LIGO Livingston, Louisiana

Quantity	A+ (O5)	A [#] (O6)	CE
Arm length (km)	4	4 💻	→ 40
Wavelength (nm)	1064	1064	1064
Mirror mass (kg)	40 🗖	> 100 💻	→ 320
Mirror diameter (cm)	34 🗖	> 46 💻	→ 70
Arm power (MW)	0.8	1.5	1.5
Squeezing (dB)	6	10	10

Cosmic Explorer

Future GW global network

To obtain meaningful astronomical results, we need a network of gravitational wave detectors.

27