ARMONIA
Constraining Dark Matter and Dark Energy with Astrophysical probes
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Bicocca Centre of Quantitative Cosmology (BiCoQ)

‘ Gravity

/\

High-precision gravity
tests
(GRAF)

Instrumentation for
high-frequency
gravity
(BAUSCIA)

‘ Dark Matter & Dark Energy ‘

—

Astrophysical tests for
dark matter & dark
energy
(ARMONIA)

Technologies for the
direct measurement of
the dark matter
(CADMO)
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Development of novel techniques to decipher the nature
of dark matter and dark energy astrophysically, through
the structure of “dark™ galaxies, cosmic filaments, and
Cosmic Birefringence of the CMB 2



Planck Collaboration (2016)

Our Universe

The Need for Dark Matter and Dark Energy
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The Standard Model of Cosmology

The standard model of cosmology (ACDM) fits observational data over scales spanning several orders of magnitude.

Remarkably, observations taken at different times and over different scales,
can be accurately described by a single curve: the ACDM power spectrum.
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Any hope to rule out ACDM from astrophysical observations lies to the right of these plots, where we do yet not have
observations!



f Structure Formation from Primordial Density Fluctuations




Sharp cutoff in
«——— galaxy effieciency
State-of-the-art . numerical  simulations. ‘of “galaxy
formation andicate that below: a characteristic_halo
mass, galaxies becomes increasingly- less massive,
- and eventually stop forming altogether.
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The low-mass end of the galaxy-halo connection

Discrepancy largely

/ due to reionization

Li & White (2009)
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RELHIC: Reionization-limited-HI-Cloud

Emission in 21 ¢cm Emission in Ha
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The First RELHIC detected with FAST?

Observations by Zhou et al. (2023) Video by ABL


https://www.google.com/url?q=http://www.youtube.com/watch?v%3Di1uJ6tgf9Rk&sa=D&source=editors&ust=1733342742991770&usg=AOvVaw2x0ICQrhaBDMh0IGJ4pL_X

The First RELHIC detected with FAST?

Benitez-Llambay & Navarro (2023)

mmmm Starless dark matter halo
@ FAST (Zhou+2023)
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Very Large Array Observations of Cloud-9
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Observed with VLA, the system displays features consistent
with being subject to ram pressure stripping.
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The central gas distribution is still consistent with a gaseous
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Planned Observations with the Hubble Space Telescope

| N

Given the importance of this detection, we diave been granted several HST orbits to survey
Cloud-9's area and search TON@En

We will strengthen the case for the * ~ We will discover the faintest dwarf
system to be starless dark matter halo =~ = galaxy known at a distance of 5 Mpc
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Proposal ID: 17712 (32 Cycle - PI: Benitez-Llambay)
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Involvement with SKA

SQUARE KILOMETRE ARRAY

We have joined the SKA collaboration and are currently designing observational approaches to survey for these
objects more systematically.
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Constraining dark matter from Lya emitting filaments i

1.5 keV WDM
-==~ Detection limit

g

* Develop tools to analyse these maps and constrain dark matter
Example: topological analysis with “Minkowski functionals”
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* From simulations output, we create mock surface brightness maps 7 i
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First evidence of the impact of the nature of dark matter on the Lya
emission from the intergalactic medium!
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Visible difference between Lya SB maps in two dark matter scenarios! Courtesy of Titouan Lazeyras 14



High-definition imaging of an extended filament connecting active quasars at cosmic noon

In-house observations in a new ultra deep field using the MUSE instrument (the MUDF), collecting over 150 hours on-source in a single sky
region. To date this is one of the two ultradeep fields available in the community.
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These types of observations enable complementary validation of the paradigm of gravitational
instability in a Universe with predominantly cold dark matter
nature

Work by Davide Tornotti et al. (2024) astronomy 15



High-definition imaging of an extended filament connecting active quasars at cosmic noon

Additional filaments identified, including a big stretch of gas at z ~ 4. These observations will open up a new era of characterization of the
Cosmic Web in emission and provide complementary probes to the paradigm of structure formation in a dark matter-dominated Universe.

Work by Davide Tornotti et al. in prep
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CO SMIC BIREFRINGENCE /::::§ \ Mario Zannoni

Federico Nati
Gabriele Coppi
CMB as a backlight for Dark Matter or Dark Energy
+ ERC-funded Postdocs and PhDs
+ Master’s students

Cosmic Birefringence produces B-modes too

Same effect of a polarization angle miscalibration
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Need of accurate polarization angle calibrators

¢ m

Sources and Horn Antennas Characterization

PUC's drone + Bicocca 90 GHz source

Upgrade of lab facilities at Bicocca

N

Images from Federico Nati, Mario Zannoni, Lorenzo Scalcinati, Gabriele Coppi
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POLARIZATION
CALIBRATORS

Anechoic Chamber

Faraday Cage

RF Absorbers

Adjustable supports

Design realized by E. Pagana & G. Gotti 1 8

Courtesy of Federico Nati



Drones already flying on site and New Anechoic chamber

Drone being tested on site at 5000 m in Chile

New Anechoic chamber at Milano-Bicocca

Courtesy of Federico Nati
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