AXION Searches at INFN

Claudio Gatti - LNF

Milano Bicocca 10 Maggio 2024

Introduction - Dark Matter

Big-Bang Nucleosynthesis

Hubble Diagram from type Ia Supernovae

Cosmic Microwave Background - Anisotropy

Plank 2018 results - arXiv:1807.06209

Baryon Acoustic Oscillations - DESI

https://www.explainxkcd.com/wiki/index.php/2035:_Dark_Matter_Candidates

Dark Matter Candidates

https://www.explainxkcd.com/wiki/index.php/2035:_Dark_Matter_Candidates

Dark Matter Candidates

AXIONS

'A few years before, a supermarket display of brightly colored boxes of a laundry detergent named Axion had caught my eye. It occurred to me that "axion" sounded like the name of a particle and really ought to be one. So <u>when I noticed a new</u> <u>particle that "cleaned up" a problem with an</u> <u>"axial" current</u>, I saw my chance'.

Frank Wilczek

Mass $m_a = 5.70(7) \left(\frac{10^{12} GeV}{f_a}\right) \mu eV \simeq \frac{m_\pi f_\pi}{f_a}$

Present limit: $f_a > 10^9 GeV$

Coupling

$$g_{a\gamma\gamma} = \frac{\alpha_{em}}{2\pi f_a} \left(\frac{E}{N} - 1.92(4)\right)$$

Lifetime

$$\Gamma_{a \to \gamma\gamma} = \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi} = 1.1 \times 10^{-24} s^{-1} \left(\frac{m_a}{eV}\right)^5$$

Axion Limits

Stellar physics:Constraints on stellar lifetime or energy-loss rates.

Astronomy: No DM $a \rightarrow \gamma\gamma$ decays seen in the visible region from galaxies with telecopes. Similar searches with X-rays and extragalactic background light (EBL) or H ionization.

L

14

Axions from the Sun

Babylaxo (DESY)

Axions from the Sun

Light Shining Through Wall Experiments

Light Shining Through Wall Experiment

Laboratori Nazionali di Legnaro (LNL)

$$\nabla^2 E - \partial_t^2 E = -g_{a\gamma\gamma} B_0 \partial_t^2 a$$

Solving the equation inside a cylindrical resonant cavity, the signal power is

$$P_{\rm sig} = \left(g_{\gamma}^2 \frac{\alpha^2}{\pi^2} \frac{\hbar^3 c^3 \rho_a}{\Lambda^4}\right) \times \left(\frac{\beta}{1+\beta} \omega_c \frac{1}{\mu_0} B_0^2 V C_{mnl} Q_L\right)$$

 β antenna coupling to cavity V cavity volume C_{mnl} mode dependent factor about 0.6 for TM010

 Q_L cavity "loaded" quality factor

Sikivie Phys. Rev. D 32,11 (1985)

The LNL Haloscope

- B=8 T
- Dilution Refrigerator
- Tcavity 110 mK
- TWPA
- T_{noise}=2 K
- Dielectric Cavity
- Sapphire tuner
- Q=2.5×10⁵
- VC₀₃₀=0.034 L

Search for galactic axions with a traveling wave parametric amplifier PHYSICAL REVIEW D 108, 062005, arXiv:2304.7505 (2023)

High-Q Microwave Dielectric Resonator for Axion Dark-Matter Haloscopes

Reversed Kerr TWPA

6 mm transmission line composed by 700 cells made of superconducting nonlinear asymmetric inductive elements (SNAIL)

(b)

$$\begin{split} \varphi(z,t) &= \frac{1}{2} \begin{bmatrix} \mathsf{Pump} & \mathsf{Signal} \\ [A_p(z)e^{i(k_p z - \omega_p t)} + A_s(z)e^{i(k_s z - \omega_s t)} \\ &+ A_i(z)e^{i(k_i z - \omega_i t)} + \mathrm{c.c.}], \\ & \mathsf{Idler} \end{split}$$

$$\omega_s + \omega_i = 2\omega_p$$

A. Ranadive et al. Kerr reversal in josephson metamaterial and traveling wave parametric amplification. Nature Communications, 13(1):1737, Apr 2022.

Results of LNL Axion Search in 2022

Search for galactic axions with a traveling wave parametric amplifier	
PHYSICAL REVIEW D 108, 062005, arXiv:2304.7505 (2023)	

RUN	$\nu_c-10.353~{\rm GHz}$	Cavity Q_L	β	Ref Peak
n	(Hz)			(a.u.)
389	522 600	230000	21.6	179
392	494 100	240000	23.8	185
394	468 800	245000	24.2	186
395	468 800	245000	24.2	187
397	439 800	245000	22.7	175
399	418 500	245000	22.6	191
401	393 100	$250\ 000$	22.5	186
404	365 400	255 000	23.5	193

QUAX@LNF: The LNF Axion Haloscope

December 2023 Run

- Cavity temperature 30 mK
- Magnetic Field B=8 T
- Frequency 8.8 GHz
- Copper cavity Q₀=50,000 with tuner
- HEMT amplifier
- Tnoise 4K
- 2 weeks data taking
- 6 MHz scan

Cavity Tuning

 α (deg)

6 MHz of frequency scan

Rod Rotation Angle [deg]

Acquisition Chain

QUAX@LNF Results for 2023 Run

- 24 runs, 1 hour each, 250 kHz of frequency steps
- Average exclusion 90% c.l. $g_{a\gamma\gamma} = 2 \times 10^{-13} \ GeV^{-1}$
- Preprint arXiv:2404.19063

$\nu_c [\text{GHz}]$	Q_L	β
8.83176900	32345	0.5206
8.83203080	32228	0.519
8.83229550	32273	0.5082
8.83255580	32332	0.5141
8.83282190	32387	0.5097
8.83307310	32401	0.5078
8.83334500	32300	0.5097
8.83360070	32503	0.5058
8.83386200	32540	0.5075
8.83412790	32752	0.5014
8.83438580	32573	0.5026
8.83464620	32904	0.5005
8.83490660	32957	0.4984
8.83516350	32863	0.4951
8.83542850	32872	0.4947
8.83568970	33326	0.4881
8.83594630	33051	0.489
8.83620570	33056	0.4894
8.83646975	33104	0.4857
8.83672330	33584	0.4823
8.83698660	33529	0.4803
8.83724500	33659	0.4823
8.83750860	33639	0.4793
8.83776640	33450	0.4793

QUAX LNF&LNL 2023-2025

COLD@LNF

CryOgenic Laboratory for Detectors:

- Axion Dark Matter Experiments
- Quantum Sensing with Superconducting Devices
- Type II and HTC
 Superconducting Cavities

The Superconducting Qubit

θ L M

© Encyclopædia Britannica, Inc.

$$E = \frac{Q^2}{2C} - E_J \cos 2\pi \phi / \phi_0$$

Superconducting Qubits on Planar Chip

Qubit in a 3D Resonator

Quantum Sensing with SC Qubits

Appl. Sci. 2024, 14(4), 1478

Quantum Sensing with Two Qubits Detector

Ansys 2023 R2.1

Appl. Sci. 2024, 14(4), 1478

R&D on cavity fabrication

R&D on qubit fabrication (CNR-IFN)

QUAX LNF&LNL 2023-2025

Galactic axion search at 100 MHz (0.5-1.5 µeV)

Large Superconducting Magnets at LNF

FINUDA→FLASH

B(T)	1.1
I(A)	2845
R(m)	1.4
L(m)	2.2

KLOE→KLASH

B(T)	0.6
I(A)	2300
R(m)	2.43
L(m)	4.4

Physics of the Dark Universe 42 (2023) 101370

INFN

THE F(K)LASH Cryostat and Resonant Cavity

- KLOE/FINUDA Magnet
- Vacuum vessel made by a-magnetic stainless steel

counterweight

- Shield in aluminum alloy, to be cooled to 70 K by gaseous Helium
- OFHC Cu resonant cavity, cooled to 4.6 K by saturated liquid Helium
- 3 OFHC Cu tuning bars mounted on eccentric cranks with reduction gearboxes

Stepper motor

(2.5 µrad)

Signal Amplification

Microstrip SQUID amplifier provides large gain, low added noise and wide tunability

Sensitivity to Axions and ALPS

Parameter	Value
$ u_c [\mathrm{MHz}] $	150
$m_a [\mu { m eV}]$	0.62
$g_{a\gamma\gamma}^{\rm KSVZ}$ [GeV ⁻¹]	2.45×10^{-16}
Q_L	1.4×10^5
C_{010}	0.53
B_{\max} [T]	1.1
eta	2
au [min]	5
$T_{\rm sys}$ [K]	4.9
$P_{\rm sig}$ [W]	0.9×10^{-22}
Scan rate $[Hzs^{-1}]$	8
$m_a [\mu \mathrm{eV}]$	0.49 - 1.49
$g_{a\gamma\gamma}$ 90% c.l. [GeV ⁻¹]	$(1.25 - 6.06) \times 10^{-16}$

Vector Dark Matter

Light Primordial Black Hole Dark Matter with Ultra-high-frequency Gravitational Waves

A. Berlin Phys. Rev. D 105, 116011

Franciolini Phys. Rev. D 106, 103520 2022

FLASH Sensitivity to HFGW

Sensitivity limited also by short duration time of the HFGW from PBHs. Gain 1 or 2 order of magnitudes wrt GHz cavities:

- Signal power scales as Radius²
- Q factor effective as long as Ncycles~Q

 $t_{int} \simeq 2.72 \cdot 10^{-14} \text{ s } \times \left(\frac{M_c}{10^{-5}M_{\odot}}\right)^{-5/3} \left(\frac{\nu}{200 \text{ MHz}}\right)^{-8/3} \left(\frac{10^6}{Q}\right)$

Mode	Resonant Frequency [MHz]	Q factor (@4°K)
TM010	109.5	626e3
TM011	166.1	526e3
TM012	272.3	752e3
TM110	174.4	790e3
TM111	214.5	598e3
TM112	304.7	712e3
TM210	233.7	915e3
TM211	264.9	664e3
TM212	342.1	755e3

GravNet: A Global Network for the Search for High Frequency Gravitational Waves

Commissioning of the FINUDA Magnet – Last Operated in 2007

Successful Test of the FINUDA Magnet

After a series of operations, the cryogenic plant was finally put back into operation. On Jan the 19th 2024, FINUDA was cooled down to 4 K and energized with a current of 2706 A, generating a magnetic field of 1.05 T.

Global Effort to Probe the Full QCD-Axion Band in the Next 10 Years

Conclusion 1:

Cavity Experiments Well Suited for Light Dark Matter and HFGW Detection

Conclusion 2:

Bulk Acoustic Wave Resonators Well Suited for Light Dark Matter and HFGW Detection

AXIONS

072009 (2024)

Piezoaxionic effect PHYSICAL REVIEW D 109, Th

HFGW

The multi-mode acoustic gravitational wave experiment: MAGE. *Sci Rep* **13**, 10638 (2023).

SCALAR DM

Sound of Dark Matter Phys. Rev. Lett. 116, 031102 (2016)

Searching for Scalar Dark Matter with Compact Mechanical Resonators PHYSICAL REVIEW LETTERS 124, 151301 (2020)

Synergies: Physics case, cryogenics, radiofrequency, quantum amplifiers/quantum sensing, DAQ and Data Analysis ... in some case also same research groups (e.g. M.Tobar's MAGE/ORGAN)

