GERDA e LEGEND: sonde ad alta sensibilità su natura e massa del neutrino

_arge Enriched Germanium Experiment for Neutrinoless ββ Decay

Carla Cattadori, Valerio D'Andrea, Francesco Salamida

ββ)

GERDA

INFN & Università Milano Bicocca Università dell'Aquila & LNGS 22 Giugno 2020

- A. Intro al Decadimento Doppio Beta (F. Salamida)
- B. GERDA (F. Salamida & C.M. Cattadori)
- C. LEGEND (V. D'Andrea)

The birth of $0\nu\beta\beta$ decay

- in 1897 J.J. Thomson discovers the electron, later (1911-1919) E. Rutherford discovers the atom and the proton.
- this model goes into crisis (among mass inconsistencies) with the observation of the continuous spectrum of beta decay;
- in 1930 Pauli to overcome this problem proposes the a new particle the **neutron**, but it is E. Fermi that in 1932 after the discovery of neutron by J. Chadwick calls the Pauli particle neutrino;
- in 1937 E. Majorana propose a description of neutral ¹/₂ spin particles (e.g neutrinos) where particle and anti-particle are identical.
- as a consequence in 1939 H. Furry suggests that $\text{Ov}\beta\beta$ decay can be observed

Search for $Ov\beta\beta$ decay

Large Eniched Germanium Experiment for Neutrinoless §B Decay

Powerful method to study the unknown neutrino properties

Observation of $0\nu\beta\beta$ decay will imply:

- 1. neutrino has Majorana nature
- 2. lepton number violation ($\Delta L = 2$)
- 3. determination of v absolute mass (nuclear model dependent)

The half life of $0v\beta\beta$ in case of light Majorana neutrino exchange:

$$\left(T_{1/2}^{0
u}
ight)^{-1}=G_{0
u} imes \left|M_{0
u}
ight|^2 imes \left(rac{m_{etaeta}}{m_e}
ight)^2$$

- Phase Space Integral: well known quantity
- Nuclear Matrix Element: most critical ingredient, produces uncertainty in the determination of m_{ββ} (quenching problem)
- Neutrino Effective Mass: estimated by measuring T^{2y}_{1/2}

Experimental signature of Οvββ

Ovββ: choosing the technique

C. Cattadori, V. D'Andrea, F.Salamida

GERDA Experiment

- In 2004 Heidelberg-Moscow experiment sub-group claims the observation of $0\nu\beta\beta$ observation ($T^{0\nu}_{1/2}$ =1.19 10²⁵ y) [Phys. Lett. B 586, 3–4, 2004]
- In 2006 GERDA Collaborations borns with the aim to confirm/disprove the claim
- 16 institutions from Italy, Germany, Russia, Switzerland, Poland
- GERDA starts data taking 2010 and stopped in 2020

a) overview

C. Cattadori, V. D'Andrea, F.Salamida

a) overviewb) liquid argon veto (LAr)

• $\beta\beta$ decay signal: single energy deposition in a 1 mm³ volume

LEGEND

GERDA

 ββ decay signal: single energy deposition in a 1 mm³ volume

FGRN

GERDA

• Muon veto based onCherenkov light and plastic scintillator

ββ decay signal: single energy deposition in a 1 mm³ volume

FARN

GERDA

- Muon veto based onCherenkov light and plastic scintillator
- LAr veto based on Ar scintillation light read by fibers and PMT

• $\beta\beta$ decay signal: single energy deposition in a 1 mm³ volume

FF

- Muon veto based onCherenkov light and plastic scintillator
- LAr veto based on Ar scintillation light read by fibers and PMT
- Ge detector anti-coincidence

- $\beta\beta$ decay signal: single energy deposition in a 1 mm³ volume
- Muon veto based onCherenkov light and plastic scintillator
- LAr veto based on Ar scintillation light read by fibers and PMT
- Ge detector anti-coincidence
- Pulse shape discrimination (PSD) for multi-site and surface α events

GERDA final setup

Semi-Coaxial detectors: 15.6 kg

- from previous experiments (HdM, IGEX)
- energy resolution: 3.6 keV (FWHM) Qββ

BEGe detectors: 20 kg

- produced for Phase II
- energy resolution: 3.0 keV (FWHM) $Q\beta\beta$
- improved Pulse Shape Discrimination with A/E (current-amplitude/energy)

Inverted-Coaxial detectors: 9.5 kg

- In production for LEGEND-200
- Excellent resolution and pulse shape discrimination performance
 [A. Domula et al., NIM A891, 106 (2018)]
- Lower surface to volume ratio

Outcome of a $\beta\beta$ -decay experiment

- Sensitivity (S): it is a computed value
- Half-life $(T^{0\nu}_{1/2})$ of the $0\nu\beta\beta \rightarrow m_{\beta\beta}$ is derived Half-life $(T^{2\nu}_{1/2})$ of the $2\nu\beta\beta$ Beyond SM/exotic physics $(T^{0}_{1/2})$

Results depend on achieved performances:

- **Exposure (M T)** units [kg yr]: it expresses the amount $S \propto a \varepsilon \cdot M \cdot t$ of isotope you "observed" · the "observation time" exposure
- Background Index (B or BI) in units of [cts/(keV kg y)] i.e. how much is the residual background in the ROI
- **Energy resolution (ΔE)** [keV]: how well your system is able to resolve peaks in the energy spectra over the exposure time

index

effective

neutrino mass

energy

resolution

nuclear matrix

element

efficiency

 $S\propto aarepsilon$

abundance

 $\frac{m_{\beta\beta}}{2}$

 $(T_{1/2}^{0\nu})^{-1} = \frac{G_{0\nu}}{M_{0\nu}} |M_{0\nu}|^2$

phase space

integral

Exposure of Phase II

Data treatment & Analysis

- 1) Data are blinded in the region ± 25 keV (ROI) around Qbb (thanks to a coarse calibration).
- 2) Apply Quality cuts (to discard trigger on noise, microdischarges, etc.)
- 3) Calibrate energy of raw spectra (thanks to calibration runs)
- 4) Select events with multiplicity 1 (only 1 Ge has a signal)--> discard γ scattering in detectors
- 5) Apply Muon veto anticoincidence.
- 6) Apply LAr anticoincidence
- 7) Apply Pulse Shape Discrimination Cuts tailored to select single site events (SSE) i.e. discard multisites (MSE).
 - a) Cuts are tailored for each detector (category and individual) on the basis of calibrations
 - b) Cuts efficiencies for MSE are evaluated by γ lines Suppression Factors (SF)
 - c) Cuts efficiencies for acceptance of $0\nu\beta\beta$ events are evaluated on $0\nu\beta\beta$ proxies structures ($2\nu\beta\beta$, Compton Edges)
- 8) Apply cut to reject α events
- 9) Measure the Background, in a ±120 keV range around Q_{bb} (excluded the blinded 50 keV)
- 10) Unblind the data in the ROI and apply the (freezed) cuts (1. to 8.)
- 11) Perform Statistical analysis: from the fit of the unblinded ROI extract the free parameter: $0v\beta\beta$ Signal Intensity $T^{0v}_{1/2} > m_{\beta\beta}$

Energy Scale and Resolution

To achieve high R in spectra integrated over years of the 40 detectors it is required

- High ΔE (order of 0.1%) of the individual detectors
- Stable system and/or capability to track/compensate instability -> calibrations

Energy Calibration Strategy in GERDA

- ~ bi-weekly ²²⁸Th calibrations
- pulser injected into FE every 20 s to monitor stability
- Digital Filter applied: Customized Cusp Filter [EPJC 75 (2015) 255]

To Check quality of calibration:

• calibrate and sum-up physics data: $\delta(E_{true}-E_{cal})$ and FWHM of known lines in integrated phy-data reflects the quality of the calibration procedure

Energy Scale and Resolution

Average FWHM values (until 2018) ^{enr}BEGE: FWHM @ $Q_{\beta\beta}$ = 3.0 keV ^{enr}Coax: FWHM @ $Q_{\beta\beta}$ = 3.6 keV

- In forthcoming data release, calibration strategy has been revised:
- Data are partitioned: FWHM and Energy scale, and uncertainties are evaluated on individual detectors, and for validity period, to reflect variations

Energy Scale and Resolution

Average FWHM values (until 2018) ^{enr}BEGE: FWHM @ $Q_{\beta\beta}$ = 3.0 keV ^{enr}Coax: FWHM @ $Q_{\beta\beta}$ = 3.6 keV

- In forthcoming data release, calibration strategy has been revised:
- Data are partitioned: FWHM and Energy scale, and uncertainties, are evaluated on individual detectors, and for validity period, to reflect variations

GERDA Global Blinded Spectra

cts / (keV·kg·yr)

Effect of LAr veto on data collected

cts / (keV·kg·yr)

10²

10

10-1

10-2

10-3

Effect of LAr veto on gamma lines

cts / 5 keV 5000 y-rays Survival Fractions (SF): enriched detectors - 103.7 kg-yr prior liquid argon (LAr) veto -⁴⁰Κ (EC: pure γ) : ~97.7 ± after LAr veto Monte Carlo $2\nu\beta\beta$ - T₁₂ from [EPJC 75 (2015) 416] 4000 0.4% cts / 1 keV 2000 -⁴²K (β⁻ + γ): ~20% 3000 EC 1000 ⁴²K from the β decay (33 yr) of 1460 1480 1500 1520 1540 2000 energy [keV] cosmogenic ⁴²Ar which is ~6 ·10⁻²¹ [⁴⁰Ar] 1000 yr fixed param. (2vBB) 1.92·10

600

800

1000

1200

1400

1600

energy [keV

Pulse Shape Discrimination (PSD)

Pulses have different shapes based on location and number of interactions in the detector

BEGe: Amplitude of Current/Amplitude of Charge Pulse (A/E) is the PSD parameter

C. Cattadori, V. D'Andrea, F.Salamida

Events selection based on pulse shape (PSD) Acceptance for 0v2β events:

- Event-per-event selection
 - Above band: events on p+ electrode (e.g. α 's from ²¹⁰Po)
 - Below band: events on n+ electrode, multiple scattering

(87.6 ± 2.5)%

Estimated from ²⁰⁸TI DEP

Double-check at low energy with $2v\beta\beta$ events (LAr cut) (85.4 ± 1.9)%

Pulse shape cuts BEGE: Survival Fractions

SF of SSE and MSE are evaluated on proxies structures

GERDA

Pulse shape cuts COAX: Survival Fraction

SF of SSE and MSE are evaluated on proxies structures

Survival fraction

GERDA

Background from α in ^{enr}BEGe

 α from ²¹⁰Po decayed: we are left with a residual rate of ~1 cts/day

Background from α in ^{enr}Coax

α from ²¹⁰Po decayed: we are left with a residual rate of <1 cts/day

GEND Background Indexes of the whole GERDA GERDA

data cot

Gata-S				
· · · · · · · · · · · · · · · · · · ·	enr. BEGe	enr. coaxial	enr. inv. coaxial	[10 ⁻⁴ cts/(keV·kg·yr)]
pre-upgrade	3.3 ^{+3.2} -1.8	7.4 ^{+4.4} -3.1		5.3 ^{+2.5} -1.9
post-upgrade	2.4 ^{+3.6} -1.7	< 9.2	< 14.2	1.2 ^{+1.8} -0.8
	3.0+2.2	5.0 ^{+3.0} -2.1	< 14.2 -> 90% lin	3.6 ^{+1.6} -1.2

*differs from [Science 365, 1445 (2019)] due to larger exposure, different dataset definition and blinding

Background Indexes of the whole GERD

Last Published Statistics and results

GERDA

History of ⁷⁶Ge experiments: lessons learned

Lessons learned

- Increase the mass
- Increase radiopurity
 - Decrease Z of shielding materials surrounding the Ge detectors (GERDA technology)
- Improve PSD

.

Comparison of Experimental Results

		Tot. M Isot. [kg]	Design <mark>Achi.vd</mark> Bl [cts/kevkgy]	Design <mark>Achi.vd</mark> FWHM [keV]	Expos ure [kg·y]	T _{1/2} Sensitivity (90%CL) [y]	T _{1/2} Achieved Limit (90%CL) [y]	m _{ee} Limit (90%CL) [meV]	This mass
Gerda II - <mark>Gerda II</mark>	⁷⁶ Ge	31.0 31.0	10 ⁻³ 0.36 ·10 ⁻³	< 4 3.0-3.7	~100 103.7	> 10 ^{26 †} 1.1·10 ²⁶	Preliminar > 10 ²⁶	90-150 120-250 [#]	range corresponds to $0.9 \cdot 10^{26}$ yr If 2004 claim of $0v\beta\beta$ evidence (1.19 10^{25} y) were true GERDA would observe ~30 events
Majorana Demonstrator	⁷⁶ Ge	27.1	<10 ⁻³ 4.7 ·10 ⁻³	< 4 2.5	26	>10 ²⁶ 4.8·10 ²⁵	2.7 ⋅ 10 ²⁵	200-433	
n-EXO EXO 200 ult. EXO 200	¹³⁶ Xe	5000 200	1.7 ·10 ⁻³	73 112	100	1.9 · 10 ²⁵	1.1 · 10 ²⁵	10 50 170-490	
<mark>Z comb.</mark> am-Zen II am-Zen II	¹³⁶ Xe	348 348	3.0 ·10 ^{−4} 6.0 ·10 ^{−4}	265 265 285	138 126 29.6	5.6 ·10 ²⁵	1.07·10²⁶ 9.6·10²⁵ 1.3 ·10²⁵	50 -160	
cuore cuore	¹³⁰ Te	206	10 ⁻² 1.38 ·10 ⁻²	5 7.0	1000 372.5	9.5 ·10 ^{25 † †} 1.7 ·10 ²⁵	3.2 ·10 ²⁵	50-190 75-350	
CUPID CUPID-0	¹⁰⁰ Mo ⁷⁶ Se		3.5 ·10⁻³	20	5.29	5.0 ·10 ²⁴	3.5 ·10 ²⁴	311-638	

C. Sensitiy, ity D'Andrea, F.Salamida

GERDA

Neutrino Mass Observable

⁷⁶Ge based Οvββ decay experiments

FEGEN

The LEGEND Experiment

Large Enriched Germanium Experiment for Neutrinoless ββ Decay Ovββ decay experimental program with discovery potential at half-life of 10²⁸ years,

- more than 50 institutions, ~250 members
- based on GERDA & MAJORANA techniques

The LEGEND goal

LEGEND aims to cover the inverted ordering region

First Stage: LEGEND-200

arXiv:1905.06572

- 200 kg of ⁷⁶Ge detectors
- modification of existing GERDA infrastructure at Gran Sasso Laboratory
- reduced background
- discovery sensitivity at 10²⁷ yr
- preparation started in 2019 data taking planned in 2021

Subsequent Stage: LEGEND-1000

arXiv:1905.06572

- 1000 kg of ⁷⁶Ge
- location to be selected, required depth under investigation
- timeline connected to review process

Improvements of LEGEND-200

arXiv:1905.06572

- New Inverted Coaxial Point-Contact Ge detectors, large active mass up to 3 kg
- Improved LAr veto system, optimization of light collection
- **PEN based** detector unit parts
- Low Mass electronics with underground electroformed Cu

Status of LEGEND-200

- GERDA infrastructure now operated by LEGEND from **February 2020 with installation of the first setup**
- **Electronics chain:** demonstrated with 20 channels in the first setup
- **New Detectors:** production of 155 kg of Inverted Coaxial HPGe in progress
- New Active LAr veto: production of fiber shroud and SiPMs in progress
- Monte Carlo Simulations and Analysis Software in preparation

Our activity in LEGEND: read-out electronics

1st stage: Low-Mass Front End

in close proximity of detectors, stringent radiopurity constraints

Feedback resistor (Rf) ~ 1 G Ω @ 87 K

Feedback- and pulser capacitance (Cp & Cf)

Bare die JFET (Moxtek MX11, wirebonded)

ULTEM frame

Axon pico-coax signal cables

Cable strain relief

<u>EPJ Web Conf 225 (2020) 01006</u>

2nd stage: Preamplifier

based on the GERDA electronics, about 30 cm above the detectors

Our activity in LEGEND: digital signal processing

We are working on the implementation of a digital filter that maximize the signal-to-noise ratio

- based on the DPLMS method, taking into account the real environmental noise
- minimization of the deviations between the experimental samples and a reference curve
- first application on GERDA & LEGEND data shows an improved energy resolution

GERDA reached important milestones in the $Ov\beta\beta$ decay search:

- energy resolution ~ 0.15% at $Q_{\beta\beta}$ i.e. ≤ 3 keV BEGe (~4 keV COAX) lowest background ever achieved: **0.36 · 10⁻³ cts/(keV·kg·yr)**
- probe of the Ovββ decay **beyond 10²⁶ yr**

the search for $Ov\beta\beta$ decay in ⁷⁶Ge will be continued by LEGEND-200 to reach a sensitivity of 10²⁷ yr LEGEND-200 is in preparation, ongoing efforts to start in 2021

Thesis Opportunities

- Test and integration of the new electronics for LEGEND-200
- Digital Signal Processing on GERDA/LEGEND data
- Data analysis of new LEGEND-200 data from 2021

Muon Veto

- Fully operational along the whole analysis data taking
- ± 10µs anti-coincidence window around HPGe signal
- Muon rate crossing GERDA: (3182 ± 2) muons/d
- Random Coincidence
 Probability with a Ge event < 10⁻⁶
- Muon contribution in the background window O(10-3)
 cts/(kev·kg·yr)
- Detection efficiency (99.935 ± 0.015) %
 [EPJC 76(2016)298]

Liquid Argon Veto: Ge event acceptance Veto & LAr Triplet half-life

LAr Veto: 16 PMTs + 15 (+2) SiPMs

Acceptance determined on randomly triggered events (pulser/BL)

Anticoincidence condition: ≥ 0.5 PE in [-1,+5] µs around HPGe trigger

Background interpretation

