

Il futuro a LHC: rivelatori 4D a CMS per nuove sfide

Seminari sperimentali INFN

6 Luglio, 2020

Andrea Benaglia

INFN Milano-Bicocca

10 anni di LHC:cosa abbiamo imparato?

30 Marzo 2010: prime collisioni a √s = 7 TeV

- LHC funziona bene, anche meglio di quanto atteso
- Gli esperimenti funzionano bene, e sono capaci di misure anche più precise di quanto atteso
- La **teoria funziona bene**, ed è anche più attendibile di quanto atteso
 - NLO è ormai routine, NNLO esiste per alcuni processi chiave, primi conti N³LO
- Il bosone di Higgs esiste
- ... non abbiamo ancora trovato niente al di là del Modello Standard (MS)
 - l'esplorazione della regione del TeV ha ulteriormente consolidato la robustezza del MS

- ... ma lo **spettro di fisica** emerso da LHC è **estremamente ricco**!
 - EWK: m_W , m_t , $sin^2\theta_W$, interazioni EWK al TeV (DY, VV, VVV, VBS, Higgs, ttH...)
 - QCD: misure precise di pdf del protone, sezioni d'urto, spettroscopie esotiche (tetra/pentaquark)...
 - Fisica del sapore: B_s → µµ, violazione di CP nel sistema dei mesoni D [1], γ_{CKM}, test dell'universalità leptonica nel decadimento dei mesoni B…

Parola chiave per il futuro: precisione

- Misure di precisione sono la <u>chiave di volta</u> per consolidare la nostra descrizione della natura, aumentare la sensibilità a possibili deviazioni dalle predizioni del MS e vincolare nuovi modelli, qualora anomalie vengano osservate
- Esempio: con 3000 fb⁻¹ a disposizione...
 (ad oggi, CMS e ATLAS hanno accumulato circa 150 fb⁻¹)

...accoppiamenti del bosone di Higgs misurati entro il 3-4% [$\kappa_{i^2} = \sigma_i / \sigma_{i^{SM}} \circ \kappa_{i^2} = \Gamma_i / \Gamma_{i^{SM}}$]

...auto-accoppiamento del bosone di Higgs accessibile [2]

3

Il futuro di LHC: alta luminosità

- Progetto HL-LHC: upgrade dell'acceleratore e degli iniettori
 - "baseline": $L_{inst.} = 5.0 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, pileup = 140
 - "utlimate": $L_{inst.} = 7.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, pileup = 200
 - luminosità "livellata": compromesso tra dati raccolti e prestazioni degli esperimenti

- EU Strategy for Particle Physics, 2013: « Europe's top priority should be the exploitation of the full potential of the LHC, including the highluminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030 »
- CERN June Council, 2016: formal approval of the entire HL–LHC project. HL–LHC declared an ESFRI landmark

HL-LHC e il pileup

Ci sarà un prezzo da pagare per l'aumento di luminosità: il **pileup**

PU 00 00 . 🛈 0 **U O** 0.0 PU

interazioni protone-protone simultanee per ogni intersezione dei fasci

CMS Average Pileup (pp, \sqrt{s} =13 TeV)

HL-LHC e il pileup

- Le **condizioni sperimentali** saranno estremamente **impegnative** in presenza di alto pileup:
 - a CMS, la ricostruzione degli oggetti è basata su algoritmi di Particle Flow, i quali dipendono in maniera cruciale dalla corretta assegnazione delle tracce ai rispettivi vertici di interazione
 - criterio fondamentale per mitigare il pileup: rigettare le particelle non associate al vertice dell'interazione primaria (PV)
 - » sfrutta l'alta granularità e risoluzione del tracciatore
 - Selezione tipica: $|\Delta z(traccia, PV)| < 1 \text{ mm}$
 - » z è la coordinata lungo l'asse del fascio
- 7

HL-LHC e il pileup

- Le **condizioni sperimentali** saranno estremamente **impegnative** in presenza di alto pileup:
 - a CMS, la ricostruzione degli oggetti è basata su algoritmi di Particle Flow, i quali dipendono in maniera cruciale dalla corretta assegnazione delle tracce ai rispettivi vertici di interazione
 - criterio fondamentale per mitigare il pileup: rigettare le particelle non associate al vertice dell'interazione primaria (PV)
 - » sfrutta l'alta granularità e risoluzione del tracciatore
 - Selezione tipica: IΔz(traccia,PV)I < 1 mm ······
 - » z è la coordinata lungo l'asse del fascio

8

- contaminazione
 - importante!

Mitigazione del pileup col timing

• Idea per mitigare gli effetti avversi del pileup con un'alta densità spaziale di vertici di interazione: sfruttare la 4° dimensione (tempo)

misura del tempo di **ciascuna traccia** con ~30 ps RMS e ricostruzione dei vertici 4D $|\Delta t$ (traccia,PV)| < 3 σ_t

come se la regione di interazione fosse divisa in sequenze temporali consecutive da ~30 ps → si recupera l'attuale densità di vertici (200 pileup × 30 ps/180 ps = 33 pileup)

Mitigazione del pileup col timing

 Idea per mitigare gli effetti avversi del pileup con un'alta densità spaziale di vertici di interazione: sfruttare la 4° dimensione (tempo)

misura del tempo di ciascuna traccia con ~30 ps RMS e ricostruzione dei vertici 4D

come se la regione di interazione fosse divisa in sequenze temporali consecutive da ~30 ps → si recupera l'attuale densità di vertici (200 pileup × 30 ps/180 ps = 33 pileup)

• 1° esempio: isolamento dei leptoni (nel caso qui mostrato, dei muoni)

i leptoni primari provenienti dall'interazione primaria (e.g. produzione di bosone Z) sono tipicamente "isolati" rispetto al resto dell'attività adronica dell'evento

• 1° esempio: isolamento dei leptoni (nel caso qui mostrato, dei muoni)

• 1° esempio: isolamento dei leptoni (nel caso qui mostrato, dei muoni)

curve ROC (receiver operating characteristics)

5-6% di aumento dell'efficienza per muoni "veri" a parità di livello di contaminazione da muoni "fake"

• 2° esempio: **vertici secondari** e identificazione dei **b-jet** (*b-tagging*)

• 2° esempio: **vertici secondari** e identificazione dei **b-jet** (*b-tagging*)

• 2° esempio: vertici secondari e identificazione dei b-jet (b-tagging)

curve ROC (receiver operating characteristics)

4-6% di aumento dell'efficienza per b-jet a parità di livello di misidentificazione di jet non da quark b

- 3° esempio: identificazione di particelle (**PID**)
 - dalla misura del tempo di volo di particelle con massa diversa (→ diversa velocità)
 - PID è uno strumento prezioso per la fisica degli ioni pesanti (collisioni PbPb) e del sapore

 $1/\beta = c \cdot (t - t_{PV}) / L$

ci sono ulteriori benefici (jet, p_T^{miss} ,)...

Impatto del timing sulla fisica a CMS

- 1° esempio: produzione di coppie di bosoni di Higgs
 - uno degli obiettivi primari di HL-LHC
 - considerando unicamente i benefici apportati dal timing a isolamenti e b-tagging
 - » i guadagni sui singoli oggetti si combinano in stati finali a molti oggetti
 - » ulteriori guadagni attesi da riduzione dei jet di pileup, miglioramento della risoluzione di $p_{T^{miss}}$, etc.

proiezioni per 3000 fb ⁻¹						
	Signal increase (%)		Expected significance		ш́ 0.35 ъ́	
Di-Higgs decay	BTL	BTL+ETL	No MTD	MTD		
bbbb	13	17	0.88	0.95		
bb au au	21	29	1.3	1.6	0.25	
$bb\gamma\gamma$	13	17	1.7	1.9		
bbWW			0.53	0.58	0.2	
bbZZ			0.38	0.42	0.15	
Combined			2.4	2.7	-	
		•			0 1–	

 $HH \rightarrow bb\gamma\gamma$ (200 Pileup Distribution)

+13% in sensitività statistica

cioè, servirebbe +26% di luminosità per equiparare guadagno senza timing cioè, circa **3 anni[*]** in più di HL-LHC

costo di 3 anni di LHC: ~1.1GCHF [Facts and figures about LHC]

Impatto del timing sulla fisica a CMS

• 2° esempio: modelli oltre il modello standard, e.g. long lived particles (LLP) in GMSB SUSY

il timing consente di misurare la velocità del neutralino χ_1^0 dalla distanza temporale (oltre che spaziale) del vertice primario e secondario

questa informazione, combinata con le proprietà cinematiche dei prodotti di decadimento visibili, consente di ricostruire la massa del neutralino nell'assunzione di gravitino leggero o *massless*

la possibilità di ricostruire una **variabile di massa** (cioè un **picco**!) cambia radicalmente le prospettive di queste ricerche

Come si misurerà il tempo delle particelle a CMS

Upgrade della calorimetria in avanti: HGCAL

- I calorimetri della parte in avanti (*endcap*) dovranno essere sostituiti
 - degradamento delle prestazioni dovuto alla dose da radiazione integrata in ~15 anni di LHC
- Al posto di ECAL+HCAL → **HGCAL** (High Granularity CALorimeter)
 - alta granularità e timing per combattere il pileup

Upgrade della calorimetria in avanti: HGCAL

Sensori: wafer esagonali da 8"di silicio, divisi in sotto-celle esagonali

<image>

Wire bonding from PCB to silicon through holes

HGCROC chip: misura del ToT (÷ ampiezza del segnale) e timing (per segnali di almeno 12 fC, ~3 MIP) **Cassette**: settori da 30 o 60° (sensori e supporto + *motherboard* di lettura)

HGCAL: misura di e/y e adroni 5D

• Misura 5D: energia, posizione e tempo di ogni particella

23

- il terreno di prova ideale per tecniche avanzate di pattern recognition

Timing in HGCAL

- Ogni cella con almeno 12 fC depositati (~3 MIP) consentirà una misura di tempo con precisione di 20-150 ps
 - la cascata elettromagnetica/adronica di ciascuna particella interessa molte celle, che possono essere combinate → miglioramento della risoluzione

- Ci si aspetta:
 - fotoni/elettroni: misura del tempo con risoluzione \leq 30 ps fino a p_T ~2 GeV
 - **adroni**: ~50 ps di risoluzione per il 70% delle particelle con p_T ~2 GeV
 - » N.B.: lo spettro di momento trasverso delle particelle dei vertici di pileup è molto soffice!

Timing di fotoni centrali: ECAL barrel

- Nella parte centrale del calorimetro elettromagnetico, i sensori attuali (cristalli+fotorivelatori) verranno mantenuti anche per la fase di alta luminosità
 - le limitazioni intrinseche nella dispersione temporale dovuta allo sviluppo dello sciame e alla raccolta di luce sono < 30 ps

- L'elettronica di lettura e formatura del segnale verrà invece sostituita
 - shaping time più breve →
 fronte di salita del segnale più ripido →
 misura del tempo con risoluzione
 ≤ 30 ps per e/γ di almeno 30 GeV
 - » <u>nessuna informazione temporale per</u> particelle MIP o fotoni di bassa energia

Serve un rivelatore di timing dedicato

- Per realizzare i vantaggi della mitigazione del pileup attraverso il timing descritti precedentemente, è necessario misurare il tempo di, possibilmente, tutte le particelle uscenti dai vertici di pileup.
- Ma, abbiamo visto che gli upgrade in programma per i calorimetri non hanno questa capacità:

0	barrel	1.	5 endcap	3 → n
	$e/\gamma \gtrsim 30 \; GeV$	~	e/γ ≈ 2 GeV •	- 1
e/γ	~ 1 GeV, MIPs	×	MIPs 🖌	٢

Serve un rivelatore di timing dedicato

- Per realizzare i vantaggi della mitigazione del pileup attraverso il timing descritti precedentemente, è necessario misurare il tempo di, possibilmente, tutte le particelle uscenti dai vertici di pileup.
- Ma, abbiamo visto che gli *upgrade* in programma per i calorimetri non hanno questa capacità:

è necessario dotare CMS di un rivelatore di timing ermetico capace di misurare il tempo con risoluzione ~30 ps per depositi di particelle al minimo di ionizzazione (MIP)

Nov. 2017: Technical Proposal Apr. 2018: Progetto ufficiale in CMS (Project Manager: T. Tabarelli de Fatis) Set. 2019: Technical Design Report e approvazione del progetto da LHCC

Progetto nato con l'importante contributo di Milano-Bicocca!

Il rivelatore MTD (MIP Timing Detector)

- Una sfida imponente:
 - rivelatore ermetico e sottile, posto tra il tracciatore e i calorimetri
 - compatibile (in termini di schedula e integrazione) con gli altri upgrade
 - limitate possibilità di R&D di sensori per vincoli di schedula
 - sensori in grado di sopravvivere ad alti livelli di radiazione
 - obiettivo: risoluzione di ~30 ps per depositi di particelle MIP

Design del rivelatore in avanti (ETL)

Sensori: Low Gain Avalanche Diode, guadagno tipico ×10-30, area della singola cella 1.3×1.3 mm²

Ultra Fast Silicon Detector E field

Moduli: sensori *bump-bonded* sul chip per la misura temporale (ETROC)

Due dischi con moduli e servizi (power & readout) alternati, raffreddati a -30° C. Dischi montati sul "naso" di HGCAL

Il danno da radiazione in ETL

- Ad una luminosità integrata di 3000 fb⁻¹ corrisponde una fluenza di particelle attesa di 1.6×10¹⁵ 1 MeV n_{eq}/cm² che investirà i sensori di ETL
 - la particolare configurazione del campo elettrico dei sensori LGAD e la temperatura di esercizio (-30° C) fanno sì che la riduzione nell'efficienza di raccolta di carica e l'aumento della corrente di buio dovuti alla radiazione siano effetti modesti
 - l'effetto più importante dovuto al danno da radiazione è una riduzione dell'amplificazione → compensata da un aumento della tensione di polarizzazione della giunzione
 - prestazioni su singolo canale migliori di 40 ps per l'intera durata di HL-LHC dimostrate a test su fascio
 - » la maggior parte delle particelle interagisce in due sensori successivi

Design del rivelatore centrale (BTL)

Sensori: barre scintillanti di LYSO (3×3×57 mm³) lette alle due estremità da fotomoltiplicatori al silicio (SiPM)

matrice di fotodiodi a valanga (APD) 40000 celle/SiPM (15×15 μm²) nel caso dei sensori di BTL

Moduli: matrici lineari di 16 barre di LYSO accoppiate su due lati a matrici lineari di 16 SiPM + elettronica di FrontEnd

31

TOFHIR chip: misura di timing e energia, mitigazione del noise

Tray: "carrelli" di moduli lunghi 2.5 m

72 tray "infilati" nel tubo in fibra di carbonio che sosterrà il tracker

La misura del tempo in BTL

~170×10³ fotoni di scintillazione per l'energia tipica di una MIP a CMS (4.2 MeV)

9000-6000 fotoelettroni in ciascun SiPM

timing determinato dai primi O(20) fotoelettroni

contributo di noise (scorrelato) dei due SiPM ridotto di un fattore $\sqrt{2}$ nella combinazione

- L'ASIC di BTL amplifica il segnale del SiPM e misura:
 - il tempo, in corrispondenza del superamento di una soglia fissa (*leading edge discrimination*)
 - » alto guadagno per avere fronte di salita ripido e consentire basse soglie equivalenti
 - la carica dell'impulso (energia), per correggere effetti di time walk
 - » basso guadagno per evitare saturazione e preservare linearità

Figure 17.37 Amplitude walk in leading edge triggering. Two pulses with identical shape and time of occurrence but different amplitude are seen to cross the trigger level at different times.

G. Knoll, Radiation Detection and Measurement

La sfida di BTL: il danno da radiazione

- Ad una luminosità integrata di 3000 fb⁻¹ corrisponde una fluenza di neutroni attesa di 2×10¹⁴ 1 MeV n_{eq}/cm² che investirà i sensori di BTL
 - − → difetti nella struttura del silicio che aumentano la probabilità di eventi di buio
 - » singole celle del SiPM con valanghe iniziate da elettroni termici
 - » a 3000 fb⁻¹, ci si aspetta un tasso di conteggi di buio (DCR) pari a 50-60 GHz!
- Strategie per mitigare l'impatto del noise (implementate):

La sfida di BTL: il danno da radiazione

- Ad una luminosità integrata di 3000 fb⁻¹ corrisponde una fluenza di neutroni attesa di 2×10¹⁴ 1 MeV n_{eq}/cm² che investirà i sensori di BTL
 - \rightarrow difetti nella struttura del silicio che aumentano la probabilità di eventi di buio
 - » singole celle del SiPM con valanghe iniziate da elettroni termici
 - » a 3000 fb⁻¹, ci si aspetta un tasso di conteggi di buio (**DCR**) pari a **50-60 GHz!**
- Strategie per mitigare l'impatto del noise (in corso di studio):

La sfida di BTL: il danno da radiazione

- Ad una luminosità integrata di 3000 fb⁻¹ corrisponde una fluenza di neutroni attesa di 2×10¹⁴ 1 MeV n_{eq}/cm² che investirà i sensori di BTL
 - \rightarrow difetti nella struttura del silicio che aumentano la probabilità di eventi di buio
 - » singole celle del SiPM con valanghe iniziate da elettroni termici
 - » a 3000 fb⁻¹, ci si aspetta un tasso di conteggi di buio (**DCR**) pari a **50-60 GHz!**
- Strategie per mitigare l'impatto del noise (in corso di studio)
 - filtro di noise
 - raffreddamento dei SiPM durante la presa dati e annealing ad alta temperatura in situ
- Proiezione delle prestazioni nel corso dei 10 anni di HL-LHC:

Caratterizzazione su fascio

• Prestazioni dei sensori studiate in diverse campagne di test su fascio al Fermilab

Caratterizzazione su fascio

• Prestazioni dei sensori studiate in diverse campagne di test su fascio al Fermilab

L'assemblaggio di 1/3 di BTL avverrà a Bicocca

• A partire dal 2022 (pandemie permettendo):

L'assemblaggio di 1/3 di BTL avverrà a Bicocca

- A partire dal 2022 (pandemie permettendo):
 - assemblaggio e controllo di qualità di ~3500 moduli in 9 mesi

prototipo di modulo + ASIC in misura (Lab 5015)

L'assemblaggio di 1/3 di BTL avverrà a Bicocca

- A partire dal 2022 (pandemie permettendo):
 - assemblaggio e controllo di qualità di ~3500 moduli in 9 mesi
 - integrazione dei moduli in 24 tray e relativo controllo di qualità in 9 mesi

esercizio della procedura di assemblaggio con prototipi del rivelatore

freezer da 2.5 m per il test dei tray a -30° C (Lab. 4021b)

Sommario

- I prossimi 20 anni a HL-LHC si prospettano entusiasmanti per la fisica delle alte energie
- Dobbiamo prepararci alle molte scoperte che, sicuramente, ci saranno
 nell'accezione più ampia di una più profonda comprensione della natura
- Le sfide tecnologiche per sfruttare al meglio il potenziale di HL-LHC sono importanti
 - alto pileup e danno da radiazione
- L'esperimento CMS, grazie ad un ambizioso programma di *upgrade*, che comprende calorimetri ad alta granularità e rivelatori di timing di precisione [*], interpreta al meglio i cambi di paradigma richiesti per trasformare una macchina adronica in una macchina di precisione

[*] questo elenco ha (almeno) un'omissione notevole, per la quale rimando al seminario di venerdì prossimo da parte di Simone

Referenze

- [1] "La scoperta della violazione di CP nel charm e il RICH di LHCb", M. Martinelli e C. Gotti, <u>https://indico.cern.ch/event/916972/</u>
- [2] "Il carattere del bosone di Higgs: una relazione da approfondire", M. Malberti e F. Brivio, <u>https://indico.cern.ch/event/916967/</u>
- [3] "Il futuro a LHC: nuove sfide per l'acquisizione e l'analisi dei dati in CMS", S. Gennai, <u>https://indico.cern.ch/event/916985/</u>